7oX

OV

Semnan University

‘ Faculty of Mechanical Engineering

Section 3:

Dynamics Review




Section 3 - Dynamics Review

Reference:

Engineering Mechanics
Dynamics

9th Edition
Meriam, Kraige & Bolton

Chapters1 -6

&)

dww’) ) ‘5“"5_7"&" WYy — &H&.o @AA.L.Q,.o IR we] K 6




Section 3 - Dynamics Review

(0 CONTENTS:

= < chapter 1: INtroduction to Dynamics

Chapter 2: Kinematics of Particles

Chapter 3: Kinetics of Particles

Chapter 4: Kinetics of Systems of Particles
Chapter 5: Plane Kinetics of Rigid Bodies

Chapter 6: Plane Kinematics of Rigid Bodies

&)

= ) g o (w30 — Sl (i 00L&



Section 3 - Dynamics Review

11 | History and Modern Applications

History of Dynamics Applications of Dynamics
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12 | Basic Concepts

0 Space

2 Time

2 Mass

2 Force

2 A Particle

2 A Rigid Body

2 Vector and Scalar quantities
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13 | Newton’s Laws

Law I. A particle remains at rest or continues to move with uniform velocity
(in a straight line with a constant speed) if there is no unbalanced force
acting on it.

Law Il. The acceleration of a particle is proportional to the resultant force
acting on it and is in the direction of this force.

F =ma

Law Ill. The forces of action and reaction between interacting bodies are
equal in magnitude, opposite in direction, and collinear.
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14 | Units

2 International System of metric units (SI)
0 U.S. Customary system of units

Section 3 - Dynamics Review

E Tl SI Units U.S. Customary Units P

Quantity Symbol Unit Symbol Unit g
S

Mass M kilogram kg slug — g
Length L Bafs:c meter® m foot ft %
units Base £

Time T second 5 .. { second sec s
units g

Force F newton N pound Ib s
S

*Also spelled merre.

U.S. Customary Units
(1 N) = (1 kg)(1 m/s%) (11b) = (1 slug)(1 ft/sec’)
N = kg m/s’ slug = Ib - sec?/ft
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15 | Gravitation

o Newton’s law of gravitation, which governs the mutual attraction between
bodies

mymiy

?‘2

F=aG

F = the mutual force of attraction between two particles
(G = a universal constant called the constant of gravitation
m,, my = the masses of the two particles

r = the distance between the centers of the particles
G =6.673(10"1) ma/(kg-sz}

W=mg

9.81 m/s® in SI units

@ 32.2 ft/sec? in U.S. customary units
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16 | Dimensions

A given dimension such as length can be expressed in a number of different
units such as meters, millimeters, or kilometers.

Thus, a dimension is different from a unit.

The principle of dimensional homogeneity states that all physical relations
must be dimensionally homogeneous

F = ML/T?
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2,1 | Introduction

Kinematics is the branch of dynamics which describes the motion of
bodies without reference to the forces which either cause the motion or
are generated as a result of the motion.

Kinematics is often described as the “geometry of motion.”

A thorough working knowledge of kinematics is a prerequisite to
Kinetics, which is the study of the relationships between motion and the
corresponding forces which cause or accompany the motion.
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2,1 | Introduction

Particle Motion

< A particle is a body whose physical dimensions are so small compared with the radius
of curvature of its path that we may treat the motion of the particle as that of a point.

Choice of Coordinates

< Rectangular coordinates X, Yy, z (Cartesian)

< Cylindrical coordinatesr, 9, z

< Spherical coordinates R, 6, ¢

< Tangent t and normal n to the curve (path variables)
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2/2 | Rectilinear Motion

o Particle P moving along a straight line

l|> +5
1

Velocity and Acceleration

< Average velocity of the particle during the interval At is the displacement divided
by the time interval or V,,, = As /At
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2/2 | Rectilinear Motion
Velocity and Acceleration

_E:S

- . M
< Instantaneous Ve|OCIty { ds .
=
. J

< The average acceleration of the particle during the interval At is the change in its
velocity divided by the time interval or a,, = Av /At.

- \
dv : ) d’s J

< Instantaneous acceleration {“ T R T
J \

\S

—p | vdv=ads or sds =s5ds
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2/2 | Rectilinear Motion

Graphical Interpretations

&
(Y
(@) I
(B) }
: |
- '
: t
‘ b | |—adt t,
Sg fz
j ds = j v dt or S — 87 = (area under v-f curve)
sy t
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Rectilinear Motion

Graphical Interpretations

(b)

© /: #——\R

a dt or vy — vy = (area under a-t curve)

) Siig 50 (0 — SilSo | oo 00 SCiS 1S




Section 3 - Dynamics Review

2/2 | Rectilinear Motion

Graphical Interpretations

a v
@ / ®)
| a
|
| |
| g s
51 —| |=—ds S2
Us g 1
J vdv = j ads or E[ng — v,%) = (area under a-s curve)
U g
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2/2 | Rectilinear Motion

Analytical Integration

o (a) Constant Acceleration
(] t
J-duzajdt or v =1Uvy+ at
U 0

[ E
J. vdv = {IJ. ds or v = vy? + 2a(s — sp)
U &

] 0

5 t
J ds = J (vg + at) dt or s =8+ uﬂ.t—k%atz
8p 0
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SAMPLE PROBLEM 2/1

s = 2t — 24t + 6,

38
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2/3 | Plane Curvilinear Motion

0 Position Vector r

Path of !
particle |
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2/3 | Plane Curvilinear Motion

Velocity

2 Average velocity of the particle between A and A’ is defined as V,,, = Ar /At

0 Instantaneous velocity (approaches tangent to the path)

2 The magnitude of v is called the speed and is the scalar

ds .
= — g

v=|v|l=—=
v dt
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2;3 | Plane Curvilinear Motion
Acceleration

0 The average acceleration of the particle between A and A’ is defined as Av /At

0 Instantaneous acceleration
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24 | Rectangular Coordinates (x-y)
Path
Vector Representation y lt
| —aV
| v
4 ) .!l Vy| | I
r = xi + yj j /o
- 6
V=1=xi+9yj 7A v
. 4
a=v ==+ il v
. iy |
S
xi i
- v
v =v,% + Uf v = Ju, 2+ Uf tan 6 = —
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24 | Rectangular Coordinates (x-y)

Projectile Motion

An important application of two-dimensional kinematic theory is the
problem of projectile motion.

For a first treatment of the subject, we neglect aerodynamic drag and the
curvature and rotation of the earth, and we assume that the altitude change is
small enough so that the acceleration due to gravity can be considered
constant.
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22| Rectangular Coordinates (x-y)
Projectile Motion
v, = (v v, = (vy)g — gt

x = x + (v)ot ¥ = yo + (vy)ot — 3gt°

U_}rz - (U}'}DE o Qg(.}' _.}’D}

.-"'-F-.
- . .
Vg 7 ]
vl S |
lg Ye=——x>v
s
™~
A
A

N N g
@ (vy)g=vgecos O
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2/5 | Normal and Tangential Coordinates (n-t)

o Measurements made along the tangent t and normal n to the path of the particle

C ,t
H____.-f ll"'__ -
« '. \
A \ in 1
-"-._l". ;"._ - i
thx B t
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2/5 | Normal and Tangential Coordinates (n-t)

Velocity and Acceleration

[V — ve; = P;éer}

=
=
/

@ Lo
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2/5 | Normal and Tangential Coordinates (n-t)

Velocity and Acceleration

_dv  dlve) . L
a= - = ve; + ve;
de, = e, df

a .
€ = B'E‘n}
e

&)
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2/5 | Normal and Tangential Coordinates (n-t)

Velocity and Acceleration

N
v? _
a=—e, +Ue

p
. vy
2 i v
v . H
H’n:_:pﬁzzuﬁ An
p
a; =0=5 =P aq=0=dpB)dt=pB+ pB
a = Ja,?+ a?
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2/5 | Normal and Tangential Coordinates (n-t)

Geometric Interpretation

<+ ay, is always directed toward the center of curvature C

&)

dfféwf)

L

Speed
increasing

(a)
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decreasing
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2/5 | Normal and Tangential Coordinates (n-t)

Circular Motion

< Circular motion is an important special case of plane curvilinear motion where the
radius of curvature p becomes the constant radius r of the circle.
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216 | Polar Coordinates (r-9)

< Particle is located by the radial distance r from a fixed point and by an angular
measurement 6 to the radial line

Path
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216 | Polar Coordinates (r-9)

Time Derivatives of the Unit Vectors

de, dey
do e, and I —e,
- . N\
e. = fe, and e, = —fe,
. J
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216 | Polar Coordinates (r-9)
Velocity

V=1r=re, + re,

v, =T
{V =re, + rﬂeﬁj

- [, 2 2

U = VU Uy

=
=T
I
-~
=]

Acceleration

a=v=(Fe, + re) + (rfe, + rbe, + roé,)

e i . . N
a=G- ro®e, + (r + 2r)e, | 4 — 5 _ 2
_,.r'l r
. . 1d .
ay = rf + 27 ay = (r’6)
o . 2

@ - \jarz + aH
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Polar Coordinates (r-6)

Geometric Interpretation
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216 | Polar Coordinates (r-9)

Geometric Interpretation
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216 | Polar Coordinates (r-9)

Circular Motion

< Same as that obtained with n- and t-components, where the n- and t-directions
coincide but the positive r-direction is in the negative n-direction.

ro \ -

=
N
I
'
=
=
I
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SAMPLE PROBLEM 2/9

Rotation of the radially slotted arm is governed by 6 = 0.2t + 0.02¢,
where 6 is in radians and { is in seconds. Simultaneously, the power
screw in the arm engages the slider B and controls its distance from O
according to r = 0.2 + 0.04#%, where r is in meters and ¢ is in seconds.

Calculate the magnitudes of the velocity and acceleration of the slider
for the instant when ¢ = 3 s.

r=0.2 + 0.04¢2 rs = 0.2 + 0.04(3%) = 0.56 m

7= 0.08t 75 = 0.08(3) = 0.24 m/s

7 =0.08 73 = 0.08 m/s?

[vg =16] v, = 0.24 m/s

[V, =10] v, = 0.56(0.74) = 0.414 m/s

(v =v,2+ v,2] v = J(0.24)% + (0.414)%2 = 0.479 m/s

&)
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SAMPLE PROBLEM 2/9

v=0479 m/s
/ | MH&
6 =02t +0.028 03 =0.2(3) + 0.02(3%) = 1.14 rad f\ v, =0.24 m/s
or 6; = 1.14(180/7) = 65.3°  Ve=04l4m/s ™/p

f = 0.2 + 0.06¢2 0; = 0.2 + 0.06(3%) = 0.74 rad/s

6 =0.12¢ 6; = 0.12(3) = 0.36 rad/s> r=056m

&)
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SAMPLE PROBLEM 2/9

[a, =7 — r6?] a, = 0.08 — 0.56(0.74)* = —0.227 m/s?
(a, =10 + 270 a, = 0.56(0.36) + 2(0.24)(0.74) = 0.557 m/s?
[a = a,? + a;’] a =(—0.227)% + (0.557)? = 0.601 m/s?

ag = 0.557 m/s?
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SAMPLE PROBLEM 2/9

< Conversion from polar to rectangular coordinates

X =rcosf y = rsin

05 / /
/ rol=056m |3

Yy, m _ o
/ 65|= 65.3 0,
U. 1

05 t=5s
-1.5 -1 —0.5 0 0.5

X, m
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28 | Relative Motion (Translating Axes)

It is not always possible or convenient, however, to use a fi xed set of axes to
describe or to measure motion.

In addition, there are many engineering problems for which the analysis of
motion is simplified by using measurements made with respect to a moving
reference system.

These measurements, when combined with the absolute motion of the
moving coordinate system, enable us to determine the absolute motion in
question.

This approach is called a relative-motion analysis.

&)
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28 | Relative Motion (Translating Axes)

Choice of Coordinate System

< The motion of the moving coordinate system is specified with respect to a fixed
coordinate system.

Vector Representation

ry =Tpg + TA/B
~

]E‘A = IE‘B + ]E'AIE or Vq = Vg + Vup ‘
vy

i;A = E'B + IILI‘A;B or

&)
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2/9 | Constrained Motion of Connected Particles

o Sometimes the motions of particles are interrelated because of the constraints
Imposed by interconnecting members.

One Degree of Freedom

< One degree of freedom: only one variable, either x or y, is needed to specify the
positions of all parts of the system.

no| b
7T A T2 i
L=x+72+2_~,-'+1.—r1+b ‘ni‘———

0=x+ 2y or 0 =vyu + 2vp

0=x+ 2y or 0=ay + 2ap

&)
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SAMPLE PROBLEM 2/16

Section 3 - Dynamics Review

The tractor A is used to hoist the bale B with the pulley arrangement
shown. If A has a forward velocity v,4, determine an expression for the

upward velocity vy of the bale in terms of x.

L=2h-y)+1=2h—y) +JRZ+ 2

JhZ + x?
1 XUy
Up -
2 /n? + £?
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31 | |ntroduction

According to Newton’s second law, a particle will accelerate when it
1s subjected to unbalanced forces.

Kinetics 1s the study of the relations between unbalanced forces and
the resulting changes in motion.

We combine our knowledge of the properties of forces, which we
developed 1n statics, and the kinematics of particle motion, and solve
engineering problems involving force, mass, and motion.
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31 | Introduction
General approaches to the solution of kinetics problems:

(A) Direct application of Newton’s second law

(called the force-mass-acceleration method)

(B) Use of work and energy principles

(C) Solution by impulse and momentum methods.

&)
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secTionA Force, Mass, and Acceleration

32 . Newton’s Second Law

The ratios of applied force to corresponding acceleration all equal the
same number, provided the units used for measurement are not changed
In the experiments.

—=—=...==—=C, a constant 2F = ma

We conclude that the constant C is a measure of some invariable
property of the particle. This property is the inertia of the particle,
which is its resistance to rate of change of velocity.

&)
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313 | Equation of Motion and Solution of Problems

Free-Body Diagram

The only reliable way to account accurately and consistently for every
force is to isolate the particle under consideration from all contacting
and influencing bodies and replace the bodies removed by the forces
they exert on the particle isolated.

The resulting free body diagram is the means by which every force,
known and unknown, which acts on the particle is represented and thus
accounted for.

Only after this vital step has been completed should you write the
appropriate equation or equations of motion.
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3/4 | Rectilinear Motion

o If we choose the x-direction, for example, as the direction of the
rectilinear motion of a particle:

2F. = ma,
2F, =0
2F. =0

o For cases where we are not free to choose a coordinate direction along

the motion:
LF, = ma,

LF, = ma,

@ XF, = ma,

JLst=" ) Sg 50 (w30 — Sl  cwdigon 0uSLils
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314 | Rectilinear Motion

o Acceleration and resultant force:

a=ald+aj+ak

_ 2 2 2
a_\fax +a,” +a,

>F = 3F,i +XF,j +IF .k

|ZF| = /(ZF,)% + (IF,)? + (IF,)*

&)
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SAMPLE PROBLEM 3/3

The 250-1b concrete block A is released from rest in the position shown
and pulls the 400-1b log up the 30° ramp. If the coefficient of kinetic
friction between the log and the ramp is 0.5, determine the velocity of

the block as it hits the ground at B.

L = 2s- + s, + constant 0 =2ac+ay
[SF,=0] N—-400c0os30°=0 N =23461b
SF, = 0.5(346) — 2T + 400 sin 30° = —20. S")\
[2F, = ma,] . sin =399 9C V T
54
+4 3F = 250 - T = 22 e l
[ = ma | =399 as
A
ay = 5.83 ft/sec? ac = —2.92 ft/sec? T = 2051b T
%T
[0% = 2ax] va = V2(5.83)(20) = 15.27 ft/sec ; 2z .

|
2501b |+
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35 | Curvilinear Motion

o Rectangular coordinates:

XF, =ma,

2F, = ma,

- Normal and tangential coordinates:

SF, = . . , ,
n = a,=pp*=v’/p=vp, a=v, and v=pp

LF, = ma,

0 Polar coordinates:

&)
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SAMPLE PROBLEM 3/6

Determine the maximum speed v which the sliding block may have

as it passes the topmost point A without losing contact with the lower

surface. Assume a slightly loose fit between the slider and the con- A
straint surfaces.

A

mg

2

[

[an=man] ng:m? y_,,h.-'gp l ———t
N=0

|
|
mn
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sectionB Work and Energy

36 | Work and Kinetic Energy
There are two general classes of problems:

(1) Integration of the forces with respect to the displacement of the particle

(2) Integration of the forces with respect to the time they are applied.

Integration with respect to displacement leads to the equations of work
and energy.

&)
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36 | Work and Kinetic Energy

Definition of Work

o The work done by the force F during the displacement dr:
dU = F-dr
=P dU =F ds cos a

F,=Fcosa = dU=F,ds

-\ r+dr
= \ By
SR R T
N.ﬂ'a\m

b - "0 008
-~ _FC
@ o
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36 | Work and Kinetic Energy

Calculation of Work

— —

2 2
Uzj F-der- (F.dx + F,dy + F,dz)
1 1 ;

.-"'/-‘

|

5q |
U:f F,ds ,/ | dU=F.ds

8y |

|

|

|

1 S92

&)
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36 | Work and Kinetic Energy

Examples of Work

0 Work Assoclated with a Constant External Force

2 2

U, = [ F-dr = J. [(Pcos a)i+ (Psina)j]-dxi
71 J1

= [ P cos a dx = P cos alxy — x1) = PL cos a

y

L _x P

! L |
. |
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36 | Work and Kinetic Energy

Examples of Work

o Work Associated with a Spring Force

2 2
Uy, = I- F-dr = I- (—kxi)-dxi = —I.
1 1

~ Xy

Force F required to

x5 stretch or compress spring

kx dx = %k(xf — Xy

2)

— dr

kx
——
Undeformed
position
—x——

A

L o

&)
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36 | Work and Kinetic Energy

Examples of Work
o Work Associated with Weight

2 2
U, = J. F-dr = j (—mgj)-(dxi + dyj) ] -
1 1
Ya dr
= —mgf dy = —mg(ys — y1) Yo " y
Y1 |
v — 1 mg L

&)
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36 | Work and Kinetic Energy

Principle of Work and Kinetic Energy

o The kinetic energy T of the particle:
T =

DO | =

0 The work-energy equation for a particle: T,+U,5,=T,

< The equation states that the total work done by all forces acting on a particle
as it moves from point 1 to point 2 equals the corresponding change in kinetic
energy of the particle.

&)
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36 | Work and Kinetic Energy

Power

0 The capacity of a machine is rated by its power, which is defined as the
time rate of doing work

P =dU/dt = F-dr/dt = P=F-v

1W=1J/s
1 hp = 550 ft-1b/sec = 33,000 ft-Ib/min
1hp =746 W = 0.746 kW

&)
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36 | Work and Kinetic Energy

Efficiency
The ratio of the work done by a machine to the work done on the machine
during the same time interval is called the mechanical efficiency €, of the

machine.
Pnutput

€ =
Pinput

In addition to energy loss by mechanical friction, there may also be electrical
and thermal energy loss, in which case, the electrical efficiency €, and
thermal efficiency e, are also involved. The overall efficiency € in such

instances Is:
€ = ¢g,,6,€;

) Sy S0 (o — Sl (SO0 U] K
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SAMPLE PROBLEM 3/11

Calculate the velocity v of the 50-kg crate when it reaches the bottom
of the chute at B if it is given an initial velocity of 4 m/s down the chute
at A. The coefficient of kinetic friction is 0.30.

[U=Fs] U,, = 50(9.81)(10 sin 15°) — 142.1(10) = —1519J

50(9.81) N
_ 1 2 _1 2
[Ty, + Uy = T ] gmu” + Uy = gmu,
1 2 1 2
5(50)(4)° — 151.9 = 5(50)
g (P =19 Pt UR=1421N =7
v = 3.15 m/s R - 4TAN

&)
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37 | Potential Energy

Gravitational Potential Energy

o The gravitational potential energy V, of the particle is defined as the
work mgh done against the gravitational field to elevate the particle a
distance h above some arbitrary reference plane.

— Vy=mgh
V,=mgh b
mg

OV =0

&Vg = mg(hg — hl) = mg&h

&)
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37 | Potential Energy

Elastic Potential Energy

2 The work which is done on the spring to deform it is stored in the
spring and is called its elastic potential energy V..

V, =f kx dx = ;—,kxg
0

AV, = L h(e? - %) A —

&)
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37 | Potential Energy

Work-Energy Equation

< Work-energy equation modification to account for the potential-energy terms
Uis + (=AV,) + (=AV,) = AT

Ui_g - ,&T <+ ﬂV

T1+V1+U{_2=T2+V2

&)
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37 | Potential Energy

Work-Energy Equation

UII-E = AT + AV
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37 | Potential Energy

Work-Energy Equation

< For problems where the only forces are gravitational, elastic, and nonworking
constraint forces:

T1+V1=TE+VE or E'l:EE

< E=T+V is the total mechanical energy of the particle and its attached spring.

&)
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SAMPLE PROBLEM 3/17

The 10-kg slider moves with negligible friction up the inclined guide.
The attached spring has a stiffness of 60 N/m and is stretched 0.6 m
in position A, where the slider is released from rest. The 250-N force is
constant and the pulley offers negligible resistance to the motion of the /\

cord. Calculate the velocity v, of the slider as it passes point C. ©

AB-BCor15—-09=06m. Uje=250(0.6) =150 J

Va=20 Ve =mgh = 10(9.81)(1.2 sin 30°) = 58.9 .J

Vi =21kx2=1(60)(0.6)2= 1087
Ve = 5hxp? = 360(0.6 + 1.2)2 = 97.2.J

[Ta+Va+Uic=Tc+Ve] 0+0+10.8+ 150 = 2(10)uc? + 58.9 + 97.2

&)
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secTioN ¢ Impulse and Momentum

3/8 | |Introduction

We can integrate the equation of motion with respect to time rather than
displacement.

This approach leads to the equations of impulse and momentum.

These equations greatly facilitate the solution of many problems in
which the applied forces act during extremely short periods of time (as in
Impact problems) or over specified intervals of time.

&)
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39 | Linear Impulse and Linear Momentum
o Linear momentum of the particle:

»G=mv 2
. d
T p— —_
>F = mv dt[mv)
-»| XF =G
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39 | Linear Impulse and Linear Momentum

The Linear Impulse-Momentum Principle

ty
G, + | IFdt=G, Gy=my,

Force, F

L]
m(vy), + J SF. dt = m(vy),
t

L]
m(vy), + j 2F, dt = m(vq),

ty

L]
m(vq), + J SF. dt = m(vy),
t

£y 2
Time, ¢
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3o | Linear Impulse and Linear Momentum

Conservation of Linear Momentum

o If the resultant force on a particle is zero during an interval of time, its
linear momentum G remain constant.

o In this case, the linear momentum of the particle is said to be
conserved.

&G=0 or G]_:GE

Principle of conservation of linear momentum

&)
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Linear Impulse and Linear Momentum

Conservation of Linear Momentum

4th stage

3rd stage
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SAMPLE PROBLEM 3/23

The 50-g bullet traveling at 600 m/s strikes the 4-kg block centrally and

is embedded within it. If the block slides on a smooth horizontal plane

with a velocity of 12 m/s in the direction shown prior to impact, deter-

mine the velocity v, of the block and embedded bullet immediately after 19
m/s

1
impact. 4kg | e

[G1 = Gg] 0.050(600) + 4(12)(cos 30% + sin 80%) = (4 + 0.050)vs (0o m | 600 m/s
v, = 10.26i + 13.33j m/s |
|

R , 16.83 m/s
[v=Jv.”+0v,2] vy=.,(10.26)" + (13.33)® = 16.83 m/s %
13.33 ./ 6=524"
[tan 6 = v, /v, ] tan @ = —— = 1.299 f = H2.4° P
! 10.26 < ) x
vt
L

&)
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310 | Angular Impulse and Angular Momentum
o A particle P of mass m moving along a curve in space.

2 The velocity of the particle is v, and its linear momentum is G = mv.

o The moment of the linear momentum vector mv about the origin O is
defined as the angular momentum H, of P about O.

[t

A\
Ho=rxmv H,=rxmv

Y

T,
T
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310 | Angular Impulse and Angular Momentum
o The scalar components of angular momentum:

Hp=r Xmv=mlv,y —v,2)i+ m(v,z —v,x)j + mlvy,x —v,y)k

1 J k
Ho=m|x vy =z
Uy Uy U
H,=m(v,y —v,z) H,=m(v,z —v,x) H, =m(vyx —v,y)
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320 | Angular Impulse and Angular Momentum

o Two- dimensional representation:

Hg = mursin 8

View in plane A

&)
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320 | Angular Impulse and Angular Momentum

Rate of Change of Angular Momentum

o The moment of the forces acting on the particle P to its angular momentum

relation: _
SMo=rX ZF =r X mv

0 Hg Differentiation leads to:

Hy=rXmv+rXmv=vXmv+rXmv

0 So: EMD = HD Mgy = H.-j: EMO} = HO} Mo, = HC’.»

< The moment about the fixed point O of all forces acting on m equals the time
rate of change of angular momentum of m about O.

&)
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320 | Angular Impulse and Angular Momentum

The Angular Impulse-Momentum Principle

0 The total angular impulse on m about the fixed point O equals the
corresponding change in angular momentum of m about O.

-1
J EMG dt = (HG}E (HD}I — ﬂiHG
t

I3

(Hp); + | ZMdt = (Hp),

£y

t,

[HG_,}I -+ EMD: dt = (ng)g

ty

Iy
@ m(v,y — v,2), + f IMo dt =m(v,y —vy2)9
£y
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320 | Angular Impulse and Angular Momentum

Conservation of Angular Momentum

o If the resultant moment about a fixed point O of all forces acting on a
particle is zero during an interval of time, its angular momentum Hg,

about that point remain constant.

2 In this case, the angular momentum of the particle is said to be conserved.

AH,=0 or (H,), = (H,),

Principle of conservation of angular momentum

) Siig 50 (0 — SilSo | oo 00 SCiS 1S
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SAMPLE PROBLEM 3/26

The assembly of the light rod and two end masses is at rest when
it is struck by the falling wad of putty traveling with speed v,
as shown. The putty adheres to and travels with the right-hand
end mass. Determine the angular velocity 6, of the assembly

just after impact. The pivot at O is frictionless, and all three &

masses may be assumed to be particles. ?1
o .

Am }# 2m

{HDJI - {HDJE
mu,l = (m + 2m)(16,)] + 4m(216,)21

&)
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312 | |mpact

Direct Central Impact
2 Collision of two spheres with collinear motion

< Conservation of linear momentum: vy > Uy

. ; y Before
mivy + Mgls = MUy + MgV impact

o ) . Maximum
Coefficient of Restitution deformation
during impact
UEJ — U]_r
E‘ f—
U1 — Ug

) 1, < U2’
After impact — @ _
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312 | |mpact

Energy Loss During Impact

o Impact phenomena are almost always accompanied by energy loss,
which may be calculated by subtracting the Kinetic energy of the system
just after impact from that just before impact.

Coefficient of
restitution, e

1 Perfectly elastic

Steel on steel

Lead on lead

Perfectly plastic
@ 0{] Relative impact velocity
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312 | |mpact

Oblique Central Impact
o Tangent and normal directions

my(vy)e = mq(vy' )y

my(vy); = my(vy' ),

my(vy), + my(vg), = my(vy'), + mylvy'),

o {Uﬂr)n T (Ull}n.

© - (Ul}n — (Ugjn

&)
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SAMPLE PROBLEM 3/29

A ball is projected onto the heavy plate with a velocity of 50 ft/sec at the
30° angle shown. If the effective coefficient of restitution is 0.5, compute
the rebound velocity v’ and its angle &'.

50 ft/sec n
\ | ;
1Ox | """ﬂ -_
{Ugr}n_{ﬂ'l'}n 05 0_{1’1’}” ?\ | r;.'_’__;l__f"-f
e = . - I - N !
(01)n — (V2)n —50 sin 30° — 0 30° Yoy 6
, R N
2
(vy"), = 12.5 ft/sec
lw{{ F. impact

m(vy), = m(vy'), (vy"); = (vy); = 50 cos 30° = 43.3 ft/sec

TF impact

v’ = (v )2+ (v,),2 = J12.5% + 43.3%2 = 45.1 ft/sec

0 = tan_l(wl }”) _ tan_l(lz'a) — 16.10°

(v,'), 43.3
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314 | Relative Motion

Relative-Motion Equation

o A particle A of mass m whose motion Is observed from a set of axes x-y-z
which translate with respect to a fixed reference frame X-Y-Z.

ay — ag + g

>F =m(ag + a,y)

&)
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314 | Relative Motion

D’Alembert’s Principle
The particle acceleration we measure from a fixed set of axes X-Y-Z, is its
absolute acceleration a. In this case the familiar relation XF = ma applies.

When we observe the particle from a moving system x-y-z attached to the
particle, the particle necessarily appears to be at rest or in equilibrium in x-y-z.

Thus, the observer who is accelerating with x-y-z concludes that a force —ma
acts on the particle to balance ZF.

@ I S B ¥
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314 | Relative Motion

D’Alembert’s Principle

o Example
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a1 | Introduction

In the previous two chapters, we have applied the principles of
dynamics to the motion of a particle.

Our next major step in the development of dynamics is to extend these
principles, which we applied to a single particle, to describe the motion
of a general system of particles.

Recall that a rigid body is a solid system of particles wherein the
distances between particles remain essentially unchanged.

&)
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32 | Generalized Newton’s Second Law

2 Considering n mass particles bounded by a closed surface in space

< Forces F1, F2, F3, . . . acting on m; from sources external to the envelop
< Forces 1, f2, f3, . . . acting on m; from sources internal to the system boundary

&)

JLst=" ) Sg 50 (w30 — Sl  cwdigon 0uSLils




Section 3 - Dynamics Review

32 | Generalized Newton’s Second Law

o The center of mass G of the isolated system of particles

mr = Zm;r; m = Xm,

2 Newton’s second law when applied to m; gives:

F1+F2‘|’F3‘|’"‘+f1‘|’fg‘|’f3+“*:m§i;f

0 Substitution into the summation of the equations of motion gives:

>F = mr or F=ma

SF, = ma, SF, = ma, >F. = ma,

&)
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4/3

Work-Energy

Work-Energy Relation

(Ur2); =AT; =i

Section 3 - Dynamics Review

U1_2 = AT or

Tl - U1_2 = Tz

U{_z — AT + AV

T1+V1+U{_2=T2+V2

< For arigid body or a system of rigid bodies joined by ideal frictionless connections, no
net work is done by the internal interacting forces or moments in the connections.

&)
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a3 | Work-Energy

Kinetic Energy Expression B, L
Fl%ffé
1 2
f1

T=2%x §miv,;2

System
boundary

V,=V+p

1 1 o . o . P (arbitrary)
i T = Egmivi-v- = Z—m-(V +p) (V+p;) O (fixed) o
_Z m;v? + Xz mlp;\2+2mﬁ'éi

Because p; is measured from the mass center, Zm;p; = 0

= T=§m + 25 m|f:>t|2

&)

JLst=" ) S50 o y8 — Slo (oo 0uSidlS




Section 3 - Dynamics Review

.
o

P (arbitrary)

a4 | Impulse-Momentum

Linear Momentum

F;
Fy
. _d F
G=Zm;(Vv+p;)=EZmv+—_Zmp, 1 X fy
dt l £,
f;

_ d
— VIm o+ &
v ml+dt (0)

System
boundary

rp

O (fixed)

) Siig 50 (0 — SilSo | oo 00 SCiS 1S e
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a4 | Impulse-Momentum
Angular Momentum F,

About a Fixed Point O. F £,

System

HO = E(ri X mivi) boundary

HO = Z(I'L X m,;Vi) + Z(I‘i X mi‘}i)

* O (fixed)

2(r; x ma;) = 2(r; X F))

* EMO = HO

&)
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.
o

a4 | Impulse-Momentum

Angular Momentum

Fs3
FQ.
About the Mass Center G. F £,
m,; f2
f1

HG = EPL X mil",;

System
boundary

HG = EPL X mz(f + P;) = EPL X mzf +sz X mip'i

™ P (arbitrary)
* O (fixed)
—f szipi
=P H;=2p, X m;p;
H; = 26; x m,(r + 8,) +Zp; X m;i, - | ZM, = H,

&)
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.
o

P (arbitrary)

a4 | Impulse-Momentum

Angular Momentum

F;
Fy
About an Arbitrary Point P. Fl% f;
L f2
f1

HP = Zp; X mii'i - Z(E + p;) X mii'i

System
boundary

* HP=Hg+§XmV

rp

O (fixed)

SM, = IM, + p xIF

—» | ZM,=H; + p x ma

&)
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a4 | Impulse-Momentum
Angular Momentum

About an Arbitrary Point P.

ZMG=I:IG

G

—p | IM, =H, + p x ma _
P

&)
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45 | Conservation of Energy and Momentum
Conservation of Energy

A mass system is said to be conservative if it does not lose energy by virtue
of internal friction forces which do negative work or by virtue of inelastic
members which dissipate energy upon cycling.

If no work is done on a conservative system during an interval of motion by
external forces (other than gravity or other potential forces), then none of the
energy of the system is lost.

AT + AV =0

T1+V1=T2+V2

&)
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45 | Conservation of Energy and Momentum

Conservation of Momentum

2 The principle of conservation of linear momentum

G1=G2

2 The principle of conservation of angular momentum

(Hp)1 = (Hp)s or (Hg)1 = (Hg)o

&)
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SAMPLE PROBLEM 4/2

Each of the three balls has a mass m and is welded to the rigid equian-
gular frame of negligible mass. The assembly rests on a smooth horizon-
tal surface. If a force F is suddenly applied to one bar as shown, deter-
mine (a) the acceleration of point O and (b) the angular acceleration 6

of the frame.

[XF = mal

Hp = Hp = 3(mré)r = 3mr?)

[SM, = Hg]

dfféwf)

_d ooy e
Fb = dt[er f) =3mreo

) Siig 50 (0 — SilSo | oo 00 SCiS 1S
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st | Introduction

Rigid-Body Assumption

Arigid body:

A system of particles for which the distances between the particles remain
unchanged.

If the movements associated with the changes in shape are very small
compared with the movements of the body as a whole, then the assumption of
rigidity is usually acceptable.

&)
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st | Introduction

Plane Motion

< Translation
< Rotation
< General plane motion

wa)

Section 3 - Dynamics Review

Type of Rigid-Body Plane Motion Example
/ A \
(@) —
Rectilinear
translation
B’ o o
Rocket test sled
A’ \
(b) !
Curvilinear / /
translation
Bf
Parallel-link swinging plate
()
Fixed-axis
rotation
Compound pendulum
(d)
General

plane motion

Connecting rod in a
reciprocating engine
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52 | Rotation

o The rotation of a rigid body is described by its angular motion.

=01+ 8

. . 2 1

92=91 B /
Ep

% = 0 3

< All lines on a rigid body in its plane of motion have the same angular
displacement, the same angular velocity, and the same angular acceleration

&)
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52 | Rotation

Angular-Motion Relations

The angular velocity w and angular acceleration o

co=@=6
4
a—d—w—cb or a—@—
T dt S der
wdw=adb or 6dé =06d6

< For rotation with constant angular acceleration:
W= Wy + at

w? = wy? + 2a(6 — 9,)

@ 8 = 6, + wot + yat®
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52 | Rotation

Angular-Motion Relations

Rotation about a Fixed Axis

&)
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52 | Rotation

Angular-Motion Relations

2 Using the cross-product relationship

V=r=QXr

rxXw=-v

a=v=wXr+owoxr
—woX(WXr)+oXr | |

= WXV+aXr
V=WwWXr

—p a,=0X(wXr)

@ T
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SAMPLE PROBLEM 5/3

The right-angle bar rotates clockwise with an angular velocity which is
decreasing at the rate of 4 rad/s?. Write the vector expressions for the
velocity and acceleration of point A when w = 2 rad/s.

w = —2k rad/s and a = +4k rad/s?

[v =0 X r] v=—2k x (0.4i + 0.3j) = 0.61 — 0.8 m/s
la, —w X (@xr)] a =2k x (0.6i — 0.8)) = —1.6i — 1.2 m/s?
[a, = a X 1] a, =4k x (0.4i + 0.3j) = —1.2i + 1.6j m/s®
—9.8i + 0.4j m/s?

[a =a, + a] a

—_—

v=0.6%2+0.8%2=1m/s and a=2.8% + 0.4%2 = 2.83 m/s?
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5/3 | Absolute Motion

We now develop the approach of absolute-motion analysis to describe the
plane kinematics of rigid bodies.

In this approach, we make use of the geometric relations which define the
configuration of the body involved and then proceed to take the time
derivatives of the defining geometric relations to obtain velocities and
accelerations.

The absolute-motion approach to rigid-body kinematics is quite
straightforward, provided the configuration lends itself to a geometric
description which is not overly complex. If the geometric configuration is
awkward or complex, analysis by the principles of relative motion may be
preferable.

&)
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SAMPLE PROBLEM 5/4

A wheel of radius r rolls on a flat surface without slipping. Determine
the angular motion of the wheel in terms of the linear motion of its
center O. Also determine the acceleration of a point on the rim of the
wheel as the point comes into contact with the surface on which the

wheel rolls.

s=rb
Vo =Tw
ap =ra
x=s—rsinf=r(@—sino) y=r—rcos@=r(l-cosb)
% =r6(1 — cos ) =vo(1 — cos O) y =rfsin 6 = vysin 6
¥ =00(1 - cos 8) + vo6 sin 6 ¥ =0psin 6 + vp0 cos 6
=ay(1 — cos 8) + rw’sin 8 = apsin 8 + rw?cos 6

0=0 =P x=0 and ¥ =row?

v =uxi+ yj a=2Xi+)j
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si4 | Relative Velocity

2 The principles of relative motion: VA =VE+t Va/p

Relative Velocity Due to Rotation

Motion relative to B Motion relative to A

UA/B =rw

AI'A = AI'B + ArA/B * V4 = Vg o= VA/B *

VA/B:COXI'
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si4 | Relative Velocity

Interpretation of the Relative-Velocity Equation
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SAMPLE PROBLEM 5/7

The wheel of radius » = 300 mm rolls to the right without slipping and
has a velocity vg = 3 m/s of its center O. Calculate the velocity of point
A on the wheel for the instant represented.

Solution I (Scalar-Geometric)

V4 = Vp ol Va0

[vai0 = 100l vao = 0.2(10) = 2 m/s
r
UAE =32+ 2% + 2(3)(2) cos 60° = 19 (m/s)? vy = 4.36 m/s I \\\ u5+———;x '
vy
L
W
3
C

AC 0.436

vajc =ACw = oc U= 0.300 () =436m/s  va=vac=436m
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SAMPLE PROBLEM 5/7

The wheel of radius » = 300 mm rolls to the right without slipping and
has a velocity vg = 3 m/s of its center O. Calculate the velocity of point
A on the wheel for the instant represented.

Solution II (Vector)

Va4 =Vp T Vupo=Vp T @ XTI
w = —10k rad/s
rp = 0.2(—1cos 30° + jsin 30°) = —0.1732i + 0.1j m
vp = 3im/s
1 j k
vy =31+ 0 0 —-10| =3i+ 1.732j +1
—0.1732 0.1 0

= 4i + 1.732j m/s

P oy, = /42 + (1.732)* = J19 = 4.36 m/s
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s5 | Instantaneous Center of Zero Velocity

We can solve the problem by choosing a unique reference point which
momentarily has zero velocity.

As far as velocities are concerned, the body may be considered to be in
pure rotation about an axis, normal to the plane of motion, passing
through this point.

This axis is called the instantaneous axis of zero velocity, and the
intersection of this axis with the plane of motion is known as the
Instantaneous center of zero velocity.

&)
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s5 | Instantaneous Center of Zero Velocity

Locating the Instantaneous Center
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SAMPLE PROBLEM 5/11

The wheel of Sample Problem 5/7, shown again here, rolls to the right
without slipping, with its center O having a velocity vp = 3 m/s. Locate
the instantaneous center of zero velocity and use it to find the velocity
of point A for the position indicated.

[w = v/r] ® = vo/ OC = 3/0.300 = 10 rad/s

AC = /(0.300)2 + (0.200)2 — 2(0.300)(0.200) cos 120° = 0.436 m

Ua
b = rol vs = ACw = 0.436(10) = 4.36 m/s A«/\
, 0200m

o Nfo
'12:}5-1‘)\4 |

x\ |U,3[}y
|
\
|C
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si6 | Relative Acceleration

2 The relative-acceleration equation:

Relative Acceleration Due to Rotation

ay = ag + (ayp), + (a4p);

(a’A/B)n = UA/Bz/r = ro?

(aa/p); = Vap =rat

(ag/g), =w X (@Xr)

(aA/B)t =0 XrTr

&)
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SAMPLE PROBLEM 5/13

The wheel of radius r rolls to the left without slipping and, at the in-
stant considered, the center O has a velocity vy and an acceleration a,
to the left. Determine the acceleration of points A and C on the wheel

for the instant considered.

w = vglr and a = aplr

ay, = ag T ayp = ag T (ayp), + (agp);
_ 5 _ (voY
(@aip)p = row”™ =1y =

Qo
(@gjp)e = rga = 1y -

ay = \_.'"fﬂaAJEE + {EIA]'F

= Vlag cos 0 + (ao)al? + lag sin 6 + (ao)d?

= \,a"r{ra cos 0 + row?)? + (ra sin 6 + rya)?

eat= ) Sg 50 (w30 — Sl  cwdigon 0uSLils




Section 3 - Dynamics Review

SAMPLE PROBLEM 5/13

The wheel of radius r rolls to the left without slipping and, at the in-
stant considered, the center O has a velocity vy and an acceleration a,
to the left. Determine the acceleration of points A and C on the wheel
for the instant considered.

ac=apgtagyg == aqo=re’

(0]

R
In

i .9
(@pighy =T®

~ _ P
— = ————
C lag,p)=ra
(@g,p)y =T
— 2 — 2
(acm}n =rao Qp =T®
an=ro
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si7 | Motion Relative to Rotating Axes

Rotating versus Nonrotating Systems

ay=ag+OXr+wX(@Xr)+ 2w X v, + a,

ap=ap+ ap/p + ay/p
a, = ap ‘ + aA/p
a, = apg + aA/B

» aA:aP+2wXVrel+arel

&)
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6/1 | |Introduction

The kinetics of rigid bodies treats the relationships between the external

forces acting on a body and the corresponding translational and rotational
motions of the body

For our purpose, a body which can be approximated as a thin slab with its

motion confined to the plane of the slab will be considered to be in plane
motion.

v"Section A: forces and moments to instantaneous linear and angular accelerations relations
v"Section B: method of work and energy

v"Section C: methods of impulse and momentum

&)
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secTioNA Force, Mass, and Acceleration

62 | General Equations of Motion

2 The force equation: >F = ma
2 The moment equation taken about the mass center: M. =H;
IMg Hg .
ma
<‘i§ <‘i§ A
¥ | | /
A F, | "7
v | 1,
‘G = Je = %
F:— /
\ SF
F3
@ Free-Body Diagram Equivalent Force- Kinetic Diagram
Couple System
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62 | General Equations of Motion

Plane-Motion Equations
< Arigid body moving with plane motion in the x-y plane

v" The mass moment of inertia:

Ho=Zp mw=wip’m;, =i [p’dm = ]

HGIICU » ZMGZHGZICZJZTC[

2F =ma

My =Ia

using x-y, n-t, or r-6 coordinates

&)
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s2 | General Equations of Motion

v The free-body diagram discloses the forces and moments appearing on the
lefthand side of equations of motion.

v" The kinetic diagram discloses the resulting dynamic response in terms of the
translational term and the rotational term which appear on the right-hand side
of equations of motion.

F3

@ Free-Body Diagram Kinetic Diagram
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62 | General Equations of Motion

Alternative Moment Equations

< General equation for moments about an arbitrary point P

*M,=H; +p x ma

=P | M, =TI + mad

LM, = (HP)rel +p Xmap

=P | SM, = Ipa + p X map

Free-Body Diagram Kinetic Diagram

v 'When point P becomes a point O fixed in an inertial reference system

&)
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62 | General Equations of Motion

Unconstrained and Constrained Motion

< The motion of a rigid body may be unconstrained or constrained.
< The two components a, and ay of the mass center acceleration and the angular acceleration

a may be determined independently or not.

< In general, dynamics problems which involve physical constraints to motion require a
kinematic analysis relating linear to angular acceleration before the force and moment

equations of motion can be solved.

;

Lol .
(a) Unconstrained Motion (b) Constrained Motion
) Siig 50 (0 — SilSo | oo 00 SCiS 1S
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62 | General Equations of Motion

Systems of Interconnected Bodies

v In problems dealing with two or more connected rigid bodies whose motions are related
kinematically, it is convenient to analyze the bodies as an entire system.

>F =Xma
SMp=2XIa +Zmad

Free-Body Diagram = Kinetic Diagram
of System of System

v" If there are more than three remaining unknowns, the E.O.M. is not sufficient to solve the problem.

&)
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63 Translation

Section 3 - Dynamics Review

2 There is no angular motion of the translating body, so that both w and «

are zero.
< Rectilinear Translation:

XF =ma
SMy=Ia=0

&)

JWW’)

) Siig 50 (0 — SilSo | oo 00 SCiS 1S

Path of G /

F3
Free-Body Diagram Kinetic Diagram

(a) Rectilinear Translation
(x=0,w=0)
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63 Translation

2 There is no angular motion of the translating body, so that both w and «
are zero.

. . F,
< Curvilinear Translation:

_ _t
>F =ma -

SMy=Ia=0

Path of
F3

G
r
\
G \
\
\
\
n

Free-Body Diagram Kinetic Diagram

(b) Curvilinear Translation
@ (a=0,w=0)
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SAMPLE PROBLEM 6/1

The pickup truck weighs 3220 lb and reaches a speed of 30 mi/hr from
rest in a distance of 200 ft up the 10-percent incline with constant ac-
celeration. Calculate the normal force under each pair of wheels and
the friction force under the rear driving wheels. The effective coefficient
of friction between the tires and the road is known to be at least 0.80.

_ 3220
ma = ﬂ(ﬁl.&l) =484 1b J{
[SF, = ma,] F-320=484 F=8041b
[ZF},:may:O] N1+N2—320020
(Mg = Ia = 0] 60N; + 804(24) — N,(60) =0

=P N, =14411b N, =1763 1b

B
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SAMPLE PROBLEM 6/1

The pickup truck weighs 3220 lb and reaches a speed of 30 mi/hr from
rest in a distance of 200 ft up the 10-percent incline with constant ac-
celeration. Calculate the normal force under each pair of wheels and
the friction force under the rear driving wheels. The effective coefficient
of friction between the tires and the road is known to be at least 0.80.

Alternative Solution y

[EM, = mad)] 120N, — 60(3200) — 24(320) = 484(24)
N, = 1763 1b

[EMy = mad] 3200(60) — 320(24) — 120N, = 484(24)
N, = 1441 1b

B
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¢/ | Fixed-Axis Rotation

< All points in the body describe circles about the rotation axis, and all lines of
the body in the plane of motion have the same angular velocity w and angular
acceleration a.

SMo=1Iax+mar = Io=1+mr’ =8 IM,=U,-mrda+mria=Ix

2F =ma
Mg =Ia
XM, 0= /i o«
Fixed-Axis Rotation Free-Body Diagram Kinetic Diagram

&)
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¢/5 | General Plane Motion

< The dynamics of a rigid body in general plane motion combines translation and
rotation.

>F = ma
Mg =Ia

F3

@ Free-Body Diagram Kinetic Diagram
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SAMPLE PROBLEM 6/5

A metal hoop with a radius r = 6 in. is released from rest on the 20°
incline. If the coefficients of static and kinetic friction are u, = 0.15 and
., = 0.12, determine the angular acceleration a of the hoop and the
time ¢ for the hoop to move a distance of 10 ft down the incline.

Assume that the hoop rolls without slipping

a=ra

[ZF, = ma,] mg sin 20° — F' = ma
[ZF, = ma, = 0] N —mgcos 20°=0
[ZM, = Ial Fr =mria

_ 32.2
= o= % sin 20° = o (0.342) = 5.51 ft/sec?
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- C
Alternatively: [EM, = I + mad] mgr sin 20° = mr? % + mar a = % sin 20°
) o 8 . o
F=mgsin20°-—m 2 sin 20°=0.1710mg
N = mg cos 20° = 0.940mg == hoop slips as it rolls

[F hax = MV Fax = 0.15(0.940mg) = 0.1410mg

&)
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[F' = u,N] F =0.12(0.940mg) = 0.1128mg
[2F, = ma,] mg sin 20° — 0.1128mg = ma
a = 0.229(32.2) = 7.38 ft/sec?
[EM = Id] 0.1128mg(r) = mria
0.1128(32.2
a = (82.2) _ 7.26 rad/sec”

6/12

_1 .0 _,/2_x_1/w_
@ [x—zo;t] -l = P 738 = 1.646 sec
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section B Work and Energy

s/6 | Work-Energy Relations

Work of Forces and Couples

U=jF-dr or U=f(Fcos a)ds

U=fMd6

do

&)
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s/6 | Work-Energy Relations

Kinetic Energy

Tranclati (c) Gen(?ral Plane
(a) Translation (b) Fixed-Axis Motion
Rotation
1 —9 17 29
1 T'=omv© +5lw
T =5mv’ T — %Iowz 2 2

T = %Icwz

C: instantaneous center
of zero velocity @
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s/6 | Work-Energy Relations

Potential Energy and the Work-Energy Equation

< Gravitational potential energy Vg and elastic potential energy V,

T:+U,2=T,

T1+V1+U{_2=T2+V2

Power
dU F-dr
P: = :F-
dt . dt M
e P=F-v+ Mw
p_dU _Mde
Cdt dt

&)
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SAMPLE PROBLEM 6/9

The wheel rolls up the incline on its hubs without slipping and is pulled
by the 100-N force applied to the cord wrapped around its outer rim. 200 mrm

If the wheel starts from rest, compute its angular velocity w after its
center has moved a distance of 3 m up the incline. The wheel has a
mass of 40 kg with center of mass at O and has a centroidal radius of il

gyration of 150 mm. Determine the power input from the 100-N force -
at the end of the 3-m motion interval.

200 + 100

U,, =100 100 (3) — (392 sin 15°)(3) =595 J

[T=imo?+1e?  Ty=0  T,=140(0.100) + }40(0.15)%
= 0.6500>

[T=3Icw®l T =3%40[(0.15)% + (0.10)? = 0.6500
[Ty+ Ups =Tyl 0+595=06500" o=30.3rad/s

w=p [P=F-v] P10 = 100(0.3)(30.3) = 908 W
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secTioN ¢ Impulse and Momentum

6/8 | Impulse-Momentum Equations

Linear Momentum

G =mv
c Ly
XF = G G, +| IFdt=a,
ty
23
2F=G, | | (@it] FFedi= (G,
. '
25, =G | | a,), +£ SF, dt = (G,)s

JLst=" ) S50 o y8 — Slo (oo 0uSidlS
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P; =wXp; V=T
7
N7
/
mi _/
Vv
Pi
G v=r

x|




6/8

Impulse-Momentum Equations

Angular Momentum

HG =f0)

ZMG - HG

to
(HG)l + f ZMgdt - (HG)2
t

&)
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P; =wXp; V=T
7
N7
/
mi _/
Vv
Pi
G v=r

x|
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6/8 | Impulse-Momentum Equations

Angular Momentum <,
v
Hy =Iw + mvd - T
d
HO = I()CU O&

2
ZMO — HO (HO)I + f ZModt == (Ho)z
21

&) T @
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6/8 | Impulse-Momentum Equations

Conservation of Momentum

G1=G2

(HO)l = (Ho)z

(HG)l — (HG)Z

&)
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SAMPLE PROBLEM 6/16

The uniform rectangular block of dimensions shown is sliding to the
left on the horizontal surface with a velocity v; when it strikes the
small step at O. Assume negligible rebound at the step and compute
the minimum value of v; which will permit the block to pivot freely
about O and just reach the standing position A with no velocity. Com-

pute the percentage energy loss n for b = c.

JWW’)

fmg dt

G

Impact of Rigid Bodies
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f mg dt muy
mu, | o . N YG Ipwy | X .
—— = r
J 0 ™
0 ¢ Jo, dt 0
o, dt

1. Collision

1 2 2
[Hy = Ipw] (Hp)g = {ﬁm(b2 +c) +m ’(%) + (%) ] }cu2

m
= E(152 + ¢,
H b m, o 9 3Ulb
[(Hp); = (Hp)ol mle = E(b + ¢*)w, Wy = 2B+ o)

&)
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f mg dt muy

G b + o YG = rgg G
Jo, dt 0

o, dt

II. Rotation about O

1 2 b2 e\2 b
[T2+V2=T3+V3] EIOCUQ -|-0=O-|-mg 5 + 5 _§

1m _, o[ 3ub Q_mig 2. 9
23(6 +C)lz(b2+c2) =5 (Vb +c"-b)

2
v = 2\/% (1 +%) (V6% + c? - b)

1 1
B ‘AE|_§mv12_§IOw22_1_k02¢022_ ) (bz+c2)’ 3b ]2
£ L2 3 )20+ e»
=1—;2 n=625% forb=c

dfféwf)

c
4(1-&-?)
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