OV

Semnan University

‘ Faculty of Mechanical Engineering

Section 2:

Statics Review




Section 2 - Statics Review

Reference:

Engineering Mechanics

Statics

8th Edition
Meriam, Kraige & Bolton

Chapters1 -6

&)

dww’) ) ‘5“"5_7"&" WYy — &H&.o @AA.L.Q,.o IR we] K 6




Section 2 - Statics Review

(J CONTENTS:

“*Chapter 1: Introduction to Statics
**Chapter 2: Force Systems
**Chapter 3: Equilibrium

**Chapter 4: Structures

**Chapter 5: Distributed Forces

**Chapter 6: Friction

&)

dww’) ) ‘5“"5_?"‘5‘" WYy — uiulS-o LE”"A':"QP" IR we] K °




Section 2 - Statics Review

1.1 MECHANICS

Mechanics is the physical science which deals with the effects of forces on objects

The principles of mechanics are central to research and development in many
fields...

The subject of mechanics is logically divided into two parts:
Statics, which concerns the equilibrium of bodies under action of forces

Dynamics, which concerns the motion of bodies
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1.2 BASIC CONCEPTS

0 Space is the geometric region occupied by bodies whose positions are described by
linear and angular measurements relative to a coordinate system.

2 Time is the measure of the succession of events and is a basic quantity in dynamics.
< Time is not directly involved in the analysis of statics problems.
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1.2 BASIC CONCEPTS

Mass is a measure of the inertia of a body, which is its resistance to a change of
velocity.

Force is the action of one body on another.
A force tends to move a body in the direction of its action.

The action of a force is characterized by its magnitude, by the direction of
Its action, and by its point of application.

Thus force is a vector quantity.

&)

= ) g 50 gy — Slo  cwtigeo 0SS



Section 2 - Statics Review

1.2 BASIC CONCEPTS

o A particle is a body of negligible dimensions. In the mathematical sense, a particle is
a body whose dimensions are considered to be near zero.

0 Rigid body. A body is considered rigid when the change in distance between any two
of its points is negligible for the purpose at hand.
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1.3  SCALARS AND VECTORS

Scalar quantities: only a magnitude is associated.
Examples: time, volume, density, speed, energy, and mass.

Vector quantities: possess direction as well as magnitude
Obey the parallelogram law of addition.

Examples: displacement, velocity, acceleration, force, moment, momentum

Vectors representing physical quantities can be classified as:
v" Free

v~ Sliding
v" Fixed
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1.3  SCALARS AND VECTORS

0 Conventions for Equations and Diagrams

o Avector quantity V is represented by a line segment
< Direction of the vector
< Magnitude of the vector |V| v
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1.3  SCALARS AND VECTORS

o Vector Summation:

/Vg V
-
- V -
-‘_d‘ -‘_#‘ Vg
#
Vl Vl Vl
Vl Vl
V=V, -V, A VAR
V’\\ —V2 \\
v.’
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1.3  SCALARS AND VECTORS

o Components of vector

2 y
/ v | v
A A
Vay Vo -
—— e — ] —— - — %
v, v,
v
= tan~! 2
f = tan V.
2 Unit vector n: V = Vn
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1.3  SCALARS AND VECTORS

o Three-dimensional vectors:

< Unit vectors i, j, and k , which are
vectors in the x-, y-, and z-directions

[V —Vi+V,j+ Vzkj
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1.4 NEWTON’S LAWS

Law I. A particle remains at rest or continues to move with uniform velocity
(in a straight line with a constant speed) if there is no unbalanced force
acting on it.

Newton’s first law contains the principle of the equilibrium of
forces, which is the main topic of concern in statics
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1.4 NEWTON’S LAWS

Law Il. The acceleration of a particle is proportional to the vector sum of
forces acting on it and is in the direction of this vector sum.

F = ma

Law Ill. The forces of action and reaction between interacting bodies are
equal in magnitude, opposite in direction, and collinear (they lie on the same
line)
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1.5 UNITS

2 In mechanics we use four fundamental quantities called dimensions.
< These are length, mass, force, and time.
< The units used to measure these quantities cannot all be chosen independently

DIMENSIONAL SI UNITS U.S. CUSTOMARY UNITS
QUANTITY SYMBOL UNIT SYMBOL UNIT SYMBOL
Mass M Base kilogram kg slug —
Length L nits meter m foot ft
Time T S second s Base Jgecond sec
Force F newton N units | 5ound 1b
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1.6 LAW OF GRAVITATION

o To compute the weight of a body: the gravitational force acting on it

o Law of gravitation:

my
_ Mmqitiag F F mo
[F - G 1‘2 J %— ———————— —_{;—:}

where F' = the mutual force of attraction between two particles

G = a universal constant known as the constant of gravitation G = 6.673(10" ™) m¥/(kg-s®)
m,, my = the masses of the two particles

r = the distance between the centers of the particles

0 Gravitational Attraction of the Earth: W = mg
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APPENDIX C - TRIGONOMETRY

C/6 TRIGONOMETRY

1. Definitions 1 0 I v
sinf = alc csch = cla ¢ a -

cos § = ble sech = c/b ; sin 6 + + B B

2. Signs in the four quadrants tan ¢ * B + B

(+) I o csc 6 + + - -

\ Ao
6 (7] 7] — —
MH) ) &l ) >/| \_|>\ (+) sec + +
o oV cot 6 + - + -
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APPENDIX C - TRIGONOMETRY

3. Miscellaneous relations 4. Law of sines
sin?0 + cos?60 =1 a sinA
1 + tan®0 = sec? 0 b sinB

1+ cot®?@ = csc? 0

sin% = 1/%(1 — cos 0)
cos% = \f%(l — cos 6)

sin 26 = 2 sin 6 cos 6

cos 20 = cos? 6 — sin? @
sin(a * b) =sinacosb * cosasinb ¢’ = a® + b? — 2ab cos C
cos(a = b) =cosacosb F sinasinb ¢ =a?%+ b*+ 2abcos D

5. Law of cosines
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2.2 FORCE

2 Properties of a single force:

< Action of one body on another
< Action which tends to cause acceleration
< Vector quantity (Magnitude and Direction)

< Forces may be combined by vector addition
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2.2 FORCE

Complete specification of the action of this force must include:
Magnitude
Direction

Point of application
v" We must treat it as a fixed vector

External and Internal Effects

External Forces:
v" Applied forces
v Reactive forces

External forces lead to creation of internal forces

&)
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2.2 FORCE

Principle of Transmissibility

When dealing with the mechanics of a rigid body, we ignore deformations in the
body

The external effects of the exerted force should be same
So it is not necessary to restrict the action of an applied force to a given point

For example:
v" Force P may be applied at A or at B or at any other point on its line of action
v" External effects: bearing support at O and roller support at C

—r—— —l\é-
P/B A\P

oR _Oc
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2.2 FORCE

2 Principle of Transmissibility:

< Aforce may be applied at any point on its given line of action without altering the

resultant effects of the force external to the rigid body on which it acts.

< The force may be treated as a sliding vector:
v Magnitude e

P B A P
v Direction
v Line of action
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2.2 FORCE

0 Force Classification

< Contact or Body forces:
v" A contact force is produced by direct physical contact

v" A body force is generated by virtue of the position of a body within a force field (such as a

gravitational)

W» Cable tension
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2.2 FORCE

0 Force Classification

< Concentrated or Distributed forces
v~ Actually, almost all forces are distributed forces.

v When the dimensions of the area are very small
compared with the other dimensions of the body,

we may consider the force to be concentrated
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2.2 FORCE

o Action and Reaction

< According to Newton’s third law, the action of a force is always accompanied by an
equal and opposite reaction

Y
|
|
|

-

S

*@)lb

60°
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2.2 FORCE

o Concurrent Forces
< Their lines of action intersect at that point
< They can be added using the parallelogram law in their common plane
R=F, +F,
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2.3 RECTANGULAR COMPONENTS

2 The most common two-dimensional resolution of a force vector:
Rectangular Components

F=F,+F,

F=Fi-+F,j

' ™

F,=Fcos§ F=JF*+F?|-[F

F}'
F,

M _

F,=Fsin 6 6 = tan !

JLst=" ) S50 o y8 — Slo (oo 0uSidlS @




Section 2 - Statics Review

2.3 RECTANGULAR COMPONENTS

o Finding the sum or resultant R of two forces (which are concurrent)
< Summing each component separately

R=F, +F; = {Fl_,i + Flyj} + (Fz,i + Fz_m.j)

Ri+Ryj= (F +Fy)i+ (F +Fy)j

R, =F, +F, =2F,
R}' =F1_-,- +F2}_= EE},
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Sample Problem 2/4

Forces F, and F, act on the bracket as shown. Determine the projection F;
of their resultant R onto the b-axis.

R? = (80)* + (100)* — 2(80)(100) cos 130° R =163.4N

Fy, = 80 + 100 cos 50° = 144.3 N
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2.4 MOMENTS

o Aforce can also tend to rotate a body about an axis
2 Moment is also referred to as torque

o The magnitude of this tendency depends on:
< Magnitude F of the force
< Effective length d of the wrench handle
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2.5 MOMENTS

2 Moment about a Point

< Plus sign for counterclockwise moments
< Minus sign for clockwise moments
< Sign consistency within a given problem is essential.
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2.5 MOMENTS

The Cross Product M=rxF)
e A 5
The moment of F about point A l
r is a position vector which runs from the fm
A A F_<_

line of action of F

moment reference point A to any point on the T P
/;I /\V

We must maintain the sequence r X F, because 0
the sequence F x r would produce a vector with a
sense opposite to that of the correct moment.

&)
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Sample Problem 2/5

Calculate the magnitude of the moment about the base point O of the
600-N force in five different ways.

2m

Solution. (I) d = 4cos40° + 2sin40° = 4.35m

M=Fd

Mg = 600(4.35) = 2610 N-m

Section 2 - Statics Review

Am | 600 N

_4();:_

2m F; =600 cos 40°

Solution. (ID) F; = 600 cos 40° = 460 N, Fs = 600 sin 40° = 386 N '\\ |
4 m (/ — ﬂ
My = 460(4) + 386(2) = 2610 N-m F, = 600 sin 40°
Lo
O
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F, y
. o |
Solution. (11D dy =4+ 2tan40° = 5.68 m F - |
2 ~— A
M N P N S
= 460(5.68) = 2610 N-
0 (5.68) m ; / \_\
1
r F_
Solution. (IV) d, =2+ 4cot 40° = 6.77m h
2 - -,
M
M, = 386(6.77) = 2610 N-m N F,
0 d, l
Solution. (V) M, =r x F = (2i + 4j) x 600(i cos 40° — j sin 40°) Fy

= —2610k N-m

M, = 2610 N-m
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2.5 COUPLE

o The moment produced by two equal, opposite, and noncollinear forces is
called a couple.

o The forces only effect is to produce a tendency of rotation

M =Fia +d) — Fa
==p M = Fd

Counterclockwise Clockwise

l : l couple couple
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2.5 COUPLE

Force—Couple Systems

The effect of a force acting on a body:
v" Push or pull the body in the direction of the force

v" Rotate the body about any fixed axis which does not intersect the line of the
force

/ . \,s \ / B...---""'\
\-—-—r/ \-:-v-—/ o

By reversing this process, we can combine a given couple and a force
which lies in the plane of the couple (normal to the couple vector) to
produce a single, equivalent force.
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Sample Problem 2/8

80 1b

Replace the horizontal 80-1b force acting on the lever by an equivalent sys-
tem consisting of a force at O and a couple.

[M = Fd] M = B0(9 sin 60°) = 624 lb-1in.

80 1b 80 1b

801b™801b 801b

624 lb-in.
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2.6 RESULTANT

The resultant of a system of forces:

The simplest force combination which can replace the original forces without
altering the external effect on the rigid body to which the forces are applied

Equilibrium of a body:
The condition in which the resultant of all forces acting on the body is zero.
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2.6

RESULTANT

2 The resultant of a system of forces

R:F1+F2+F3+“‘:2F
SF, R,=3F, R=/(3F,)?+ (3F)?
R > F
_ -1_Y _ -1 u
f# = tan R_x = tan SF.

dfféwf)
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2.0 RESULTANT

2 Algebraic Method
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2.0 RESULTANT

'S ™y
2 Principle of Moments R=2=F
M, = SM = S(Fd)
Rd = M,
L w

< The three forces have a zero resultant force
but have a resultant clockwise couple (M = Fsd)

<
Y B
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Sample Problem 2/9

plate shown.

Solution. Point O is selected as a convenient reference point

R, = SF]
[R, = 3F,]

R=JRZ+RJ

Determine the resultant of the four forces and one couple which act on the ~T
2m
60 N < b5m— i
50N |
450 — _+ _____ I_\'
R, = 40 + 80 cos 30° — 60 cos 45° = 66.9 N 2m : r !—
R, = 50 + 80 sin 30" + 60 cos 45° = 132.4 N 2m I |
, ON—tpe_______OL
R = /(66.9)® + (132.4)2 = 1483 N 1my
132.4
= tan! = 63.2°
0= tan 69
Mgy = 140 — 50(5) + 60 cos 45°(4) — 60 sin 45°(7)
= —237TN-m

R
lﬁ = tan|‘1 R_j
(Mo = Z(Fd)]
[Rd = |M,]

dfféwf)

140 N'm

80N

s

148.3d = 237 d = 1.600 m
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R=1483N

237 g =63.2°
Ryb= |Mg| and E}=m= 1.792 m r— L4 —x
r x R= MO -
=P (xi +yj) x (66.9i + 132.4j) = —237k \63 -
(132.4x — 66.9y)k = — 237k “‘{}L
A
132.4x — 66.9y — —237
== By setting y = 0, we obtainx = —1.792 m 132.4x — 669y = /
-237 y
|
C |
— |- — —x
|
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3.1 INTRODUCTION
Statics:
Description of the force conditions necessary and sufficient to maintain the

equilibrium

Procedures developed here form the basis for solving problems in both statics and
dynamics

When a body is in equilibrium, the resultant of all forces acting on it is zero.

[R=EF={1 M==M=0

|
-

&)

dc-‘?w,) \&Jsﬁ'&owjb_‘;é&obdﬁ“&o!s".b



Section 2 - Statics Review

3.2 SYSTEM ISOLATION AND THE FREE-BODY DIAGRAM

First, Define the system to be analyzed and represent all forces acting on
the body

A mechanical system is defined as a body or group of bodies which can be
conceptually isolated from all other bodies

Free-Body Diagram (FBD):
A diagrammatic representation of the isolated system treated as a single body which
shows all forces applied to the system containing

&)
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3.2 SYSTEM ISOLATION AND THE FREE-BODY DIAGRAM

o Modeling the Action of Forces

Type of Contact and Force Origin Action on Body to Be

Isolated
1. Flexible cable, belt, | ;8 Force exerted by

chain, or rope A <« E a flexible cable is
Weight of cable I T always a tension away

negligible ' ] from the body in the
s y‘ direction of the cable.

Weight of cable

not negligible

&)
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3.2 SYSTEM ISOLATION AND THE FREE-BODY DIAGRAM

o Modeling the Action of Forces

Type of Contact and Force Origin Action on Body to Be
Isolated

2. Smooth surfaces ~

~ Contact force 1is
> o compressive and is
N ~ normal to the surface.

&)
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3.2 SYSTEM ISOLATION AND THE FREE-BODY DIAGRAM

o Modeling the Action of Forces

Type of Contact and Force Origin Action on Body to Be
Isolated
3. Rough surfaces Rough surfaces are
F‘,.—“\N capable of supporting a
ff tangential component F
ﬂY R ~ _ (frictional force) as well
“x\,’ as a normal component
N N of the resultant

contact force R.
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3.2 SYSTEM ISOLATION AND THE FREE-BODY DIAGRAM

o Modeling the Action of Forces

Type of Contact and Force Origin Action on Body to Be
Isolated

4. Roller support
iﬁ Roller, rocker, or ball

N support transmits a
compressive force
< < normal to the
! ! .
o 9 o) supporting surface.
N

&)
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3.2 SYSTEM ISOLATION AND THE FREE-BODY DIAGRAM

o Modeling the Action of Forces

Type of Contact and Force Origin Action on Body to Be
Isolated

Collar or slider free to

5. Freely sliding guide move along smooth
- guides; can support
:b . force normal to guide
ly.
- N N oy

&)
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3.2 SYSTEM ISOLATION AND THE FREE-BODY DIAGRAM

o Modeling the Action of Forces

Type of Contact and Force Origin Action on Body to Be
Isolated

Pin free to turn A freely hinged pin
6. Pin connection connection is capable
c E}_ of supporting a force

R in any direction in the
* R plane normal to the
R, pin axis. We may
Ff?:?m ;,/_ either show two
Pin not free to turn components R, and

R, or a magnitude R
and direction 6. A pin
not free to turn also
supports a couple M.
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3.2 SYSTEM ISOLATION AND THE FREE-BODY DIAGRAM

o Modeling the Action of Forces

Type of Contact and Force Origin Action on Body to Be
Isolated

7. Built-in or fixed support A A built-in or fixed
| support is capable of
A A | supporting an axial
or F force F', a transverse
force V (shear force),
~Weld and a couple M
Vv (bending moment) to
prevent rotation.

&)
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3.2 SYSTEM ISOLATION AND THE FREE-BODY DIAGRAM

o Modeling the Action of Forces

Type of Contact and Force Origin Action on Body to Be
Isolated

8. Gravitational attraction The ]'T'EESL:lltant of
gravitational

attraction on all
m G elements of a body of
mass m 1s the weight
‘ ‘ \ \ \ ‘ W = mg and acts
FYvyyvy W = mg toward the center of
the earth through the
center of gravity G.
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3.2 SYSTEM ISOLATION AND THE FREE-BODY DIAGRAM

o Modeling the Action of Forces

Type of Contact and Force Origin Action on Body to Be
Isolated
9. Spring action _ ) Spring force is tensile if
Linear Nonlinear the spring is stretched
Neutral F F and compressive if
PC'SlFlDﬂ | | Hardemng By compressed. For a
k é.__ “ linearly elastic spring
| f the stiffness k is the
};\#\r\r\:\ﬁ-ﬁ-— / |/ Softening force required to deform
__x oy the spring a unit
distance.
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3.2 SYSTEM ISOLATION AND THE FREE-BODY DIAGRAM

o Modeling the Action of Forces

Type of Contact and Force Origin Action on Body to Be

Isolated

10. Torsional spring action

M@S);j_lﬂ_ (— %f S

1
T ”ul

Neutral position

&)
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spring, the apphed
moment M 1s
proportional to the
angular deflection 6
from the neutral
position. The stiffness
kp1s the moment
required to deform the
spring one radian.




Section 2 - Statics Review

3.2 SYSTEM ISOLATION AND THE FREE-BODY DIAGRAM

Construction of Free-Body Diagrams

Stepl. Decide which system to isolate. (involve one or more of the desired unknown quantities)

Step2. Isolate the system by drawing a diagram which represents its complete external

boundary
Step 3. Identify all forces acting as applied by the removed contacting and attracting bodies

Step 4. Show the choice of coordinate axes directly on the diagram
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3.2 SYSTEM ISOLATION AND THE FREE-BODY DIAGRAM

o Examples of Free-Body Diagrams

1. Plane truss

Weight of truss P
assumed negligible P y
compared with P |
|
A, —€ L x
+ A, 1‘ B,

) Siig 50 (0 — SilSo | oo 00 SCiS 1S
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3.2 SYSTEM ISOLATION AND THE FREE-BODY DIAGRAM

o Examples of Free-Body Diagrams

2. Cantilever beam Fq F, Fy
% le Fi \

F x
A Mass m M

&)
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3.2 SYSTEM ISOLATION AND THE FREE-BODY DIAGRAM

o Examples of Free-Body Diagrams

3. Beam . A
Smootly M /( M
contact at A.

Mass m N ¥
A |
P *
B

P=—x ™

|
Bx W=mg |___x
BJ’

&)
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3.2 SYSTEM ISOLATION AND THE FREE-BODY DIAGRAM

o Examples of Free-Body Diagrams

4. Rigid system of interconnected bodies
analyzed as a single unit

=

P -

]

P ——
Weight of mechanism

neglected

dfféwf)

< U
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3.3 EQUILIBRIUM CONDITIONS
2 Equilibrium:

< The condition in which the resultant of all forces and moments acting on a body is
Zero.

< Abody is in equilibrium if all forces and moments applied to it are in balance.

<« Vector Equation: [R “SYF=0 M= SM-=0
S
<« Components Equation: [E F—o SF =0 SM, = 0 )
x ¥ -~ )

v" about any point O on or off the body

&)
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3.3 EQUILIBRIUM CONDITIONS

o Categories of Equilibrium

Section 2 - Statics Review

Force System

Free-Body Diagram

Independent Equations

1. Collinear

F3 /..-»"'x

LF.=0

2. Concurrent LF =0
at a point

ZFy =0

&)
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3.3 EQUILIBRIUM CONDITIONS

o Categories of Equilibrium

Section 2 - Statics Review

Force System

Free-Body Diagram

Independent Equations

3. Parallel

Y
|
|
L ——x

IF,=0 =IM,=0

Z

4. General

LF,=0 XIM,=0
IF,=0

JWW’)

) Siig 50 (0 — SilSo | oo 00 SCiS 1S




Section 2 - Statics Review

3.3 EQUILIBRIUM CONDITIONS

2 Two-Force Members in equilibrium:
< The forces must be:
v Equal
v Opposite
v Collinear

/

yulVs

v" The shape of the member does not affect, the weights of the member is negligible

&)
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3.3 EQUILIBRIUM CONDITIONS

2 Three-Force Members in equilibrium:

< Lines of action of the three forces to be concurrent
(Except for 3 parallel forces)

v" Three forces make closed pol

Clozed polygon
satisfies EF =0

&)
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3.3 EQUILIBRIUM CONDITIONS

2 Alternative Equilibrium Equations

v The two points A and B must not lie on a line perpendicular to the x-direction.

SF.=0  XM,=0 SMp =0
v" A, B, and C are any three points not on the same straight line.

SMy=0 SMp=0  SM,=0

&)
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3.3 EQUILIBRIUM CONDITIONS

Approach to Solving Problems

Identify clearly the quantities which are known and unknown.

Choose body (or system of connected bodies) to be isolated.

Choose a convenient set of reference axes.

Identify and state the applicable force and moment principles or equations.
Match the number of independent equations with the number of unknowns.

Carry out the solution and check the results.

&)
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y
I
I
I

Sample Problem 3/1

Determine the magnitudes of the forces C and T, which, along with the
other three forces shown, act on the bridge-truss joint.

Solution | (scalar algebra).

[ZF, = 0] 8+ Tcosd40°+ Csmn20°—16 =0
0.766T + 0.342C =8
[ZF, = 0] Tsnd0° — Cecos20°—3 =0
0.643T — 0.940C =3

T =9.09 kN C = 3.03 kN
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Sample Problem 3/1

Determine the magnitudes of the forces C and T, which, along with the
other three forces shown, act on the bridge-truss joint.

y
I
I
I

Solution Il (scalar algebra).

[EFJ,r = 0] —Cecos20° — 3cos40° — Besin 40° + 16 sin 40° = 0
C = 3.03 kN
[ZF, = 0] T + 8 cos 40° — 16 cos 40° — 3 sin 40° — 3.03 sin 20° = 0

T=909 kN
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Sample Problem 3/1

Determine the magnitudes of the forces C and T, which, along with the
other three forces shown, act on the bridge-truss joint.

Solution Il (vector algebra).

[SF=0]  8i + (T cos 40°)i + (T sin 40°)j — 3j + (C sin 20°)i
— (C cos 20°)j — 16i = 0

8+ Tcosd0" + Csin20°—16 =0

Tend40®*— 3 —Ceos20°=10

T'=909kN C =3.03kN
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Sample Problem 3/1

Determine the magnitudes of the forces C and T, which, along with the
other three forces shown, act on the bridge-truss joint.

Solution IV (geometric).

3 kN

16 EN
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Sample Problem 3/4

Determine the magnitude T of the tension in the supporting cable and the
magnitude of the force on the pin at A for the jib crane shown. The beam AB is a
standard 0.5-m I-beam with a mass of 95 kg per meter of length. 5

0.25 m
Ay |
EE—T 0.5 m
The weight of the beam is 95(10 °)(5)9.81 = 4.66 kN ' |k
, —oll~—0.12m
[EM, = 0] (T cos 25°)0.25 + (T sin 25°)(5 — 0.12)
—10(5 — 1.5 — 0.12) — 4.66(2.5 — 0.12) = 0
5
T = 19.61 kN m
SF, = 0] A, — 19.61 cos 25° = 0 A, = 17.7TkN y T
|
[XF, = 0] A, +1961sin25°— 466—10=0 A, =6.3TkN a4, | 25° I
[A=JAZ+A7% A=/(1777)°+ (6.37)> = 18.88 kN A,
. 4.66 kN

10 kN
Free-body diagram
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Sample Problem 3/4

Determine the magnitude T of the tension in the supporting cable and the
magnitude of the force on the pin at A for the jib crane shown. The beam AB 1s a
standard 0.5-m I-beam with a mass of 95 kg per meter of length.

Graphical solution

eat= ) Sg 50 (w30 — Sl  cwdigon 0uSLils
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Sample Problem 3/6

A 200-N force is applied to the handle of the hoist in the direction shown.
The bearing A supports the thrust (force in the direction of the shaft axis), while
bearing B supports only radial load (load normal to the shaft axis). Determine
the mass m which can be supported and the total radial force exerted on the
shaft by each bearing. Assume neither bearing to be capable of supporting a mo-
ment about a line normal to the shaft axis.

1732N | 1732N

I/,:'l__f 70.7N

il (gt

L) BJ, A7 ) \kv - —AJ, + BF
A, +B,

mg =9.81m mg =9.81m

eat= ) Sg 50 (w30 — Sl  cwdigon 0uSLils
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Radial
bearing C Thrust

bearing

Dimensions in millimeters




[ZM, = 0]

[SF, = 0]

[SF, = 0]

[SF, = 0]

wa)

100(9.81m) — 250(173.2) = 0 m = 44.1kg

150B, + 175(70.7) — 250(70.7) = 0 B,=354N

A, +354-707=0 A, = 354N

150B, + 175(173.2) — 250(44.1)(9.81) = 0 B, = 520N

A, + 520 — 173.2 — (44.1)(9.81) = 0 A, = 868N
A,=T07TN

A, = JAZ+AA A - /(354)7+(86.8)2= 935N

B =J/B2+B2A B =,/(354)?+ (5202 = 521N

) Siig 50 (0 — SilSo | oo 00 SCiS 1S
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1 1B, J’ 1?3.2 N

B 1?32N 7
707N
1 '= _x\&

707N |~
_7]A +B
A.+B,
mg =9.81m mg = 981m
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4.1 INTRODUCTION

An engineering structure:

Any connected system of members built to support or transfer forces and to safely
withstand the loads applied to it.

To determine the forces internal to an engineering structure;

dismember the structure and analyze separate free body diagrams of individual
members or combinations of members.

&)
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4.2 PLANE TRUSSES

o A framework composed of members joined at their ends to form a rigid
structure is called a truss.

< Bridges, roof supports, and other such structures are common examples of trusses.

eat= ) Sg 50 (w30 — Sl  cwdigon 0uSLils @




Section 2 - Statics Review

4.2 PLANE TRUSSES

To design a truss:
Determine the forces in the various members
Select appropriate sizes and structural shapes to withstand the forces.

Several assumptions are made in the force analysis of simple trusses:

All members to be two-force members.
v" A two-force member is one in equilibrium under the action of two forces only

Each member is normally a straight link joining the two points of application of force.
The two forces are applied at the ends and are necessarily equal, opposite, and collinear.
The weight of the member is small compared with the force it supports.

&)
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4.2 PLANE TRUSSES

< The member may be in tension or compression: g7 .
T
f J
< Truss Connections and Supports: / /
v" 'When welded or riveted connections are used to join

structural members, we may usually assume that the 8 :

connection is a pin joint if the centerlines of the ¢ ¢

members are concurrent at the joint r r

Tension Compression

Two-Force Members

dww’) ) ‘5“"5_?"‘5‘" WYy — uiulS-o LE”"A':"QP" IR we] K @
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4.2 PLANE TRUSSES

2 Two methods for the force analysis of simple trusses will be given:
v Method of Joints
v Method of Sections

< The external reactions are usually determined first, by applying the equilibrium
equations to the truss as a whole. Then the force analysis of the remainder of the
truss is perfi 7 :

&)
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4.3 METHOD OF JOINTS

o Satisfying the conditions of equilibrium for the forces acting on the
connecting pin of each joint.

< The method therefore deals with the equilibrium of concurrent forces, and only
two independent equilibrium equations are involved.

4

y .
| Compression
|
|
|
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4.3 METHOD OF JOINTS

2 Analyzing the Truss

2 3
AF, EF EF \BF e
BE  BE
BF
AF f
a A5 R, AB se
/P BF —— L
Joint F BF
AR
o
R, AB
Joint A
LY
Joint B

&)
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4.3 METHOD OF JOINTS

2 Analyzing the Truss

4 JCE=0 5 gr 6 DE
BE DE ch
I R
Joint O BE EF 2, DE ,
Joint E Joint D

&)
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4.4 METHOD OF SECTIONS

We can take advantage of the third or moment equation of equilibrium by
selecting an entire section of the truss for the free body in equilibrium.

The force in almost any desired member may be found directly from an
analysis of a section which has cut that member.

In choosing a section of the truss, in general, not more than three members
whose forces are unknown should be cut.

&)
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4.4 METHOD OF SECTIONS

o llustration of the Method of Sections
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Sample Problem 4/3

Calculate the forces induced in members KL, CL, and CB by the 20-ton H I J K
load on the cantilever truss. 116’ 'r 26
BL = 16 +(26 — 16)/2 = 21 ft G F E D C B A
6 panels at 12’
[EMp, = 0] 20(5)(12) — CB(21) =0 CB = 57.1tons C 20 tons
6 = tan '(5/12) == cos = 12/13 6
\
KL |rL
[EM, = 0] 20(4)(12) — EIGL{IESJ =0 KL = 65tons T Yy — J—"J
13 | - CL
- -
PC/16 = 24/(26 — 16) = 38.4 ft : -7 1B/
- -— r _
B = tan !(CB/BL) = tan (12/21) = 20.7° wep cosg=0868 C[ p c s
# [EMp = 0] 20(48 — 38.4) — CL(0.868)(38.4) =0
CL = 5.76 tons C 20 tons
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4.6 FRAMES AND MACHINES

Frame or Machine:

A structure which at least one of its individual members is a multiforce
member.

v A multiforce member is defined as one with three or more forces acting on it, or one with
two or more forces and one or more couples acting on it.

v" Frames are structures which are designed to support applied loads and are usually fixed in
position.

v Machines are structures which contain moving parts and are designed to transmit input
forces or couples to output forces or couples.

v" Because frames and machines contain multiforce members, the forces in these members in
general will not be in the directions of the members.

v" Therefore, we cannot analyze these structures by the methods developed.

&)
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4.6 FRAMES AND MACHINES

Interconnected Rigid Bodies with Multiforce Members

The forces acting on each member of a connected system are found by
Isolating the member with a free-body diagram and applying the equations
of equilibrium.

The principle of action and reaction must be carefully observed.

&)
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4.6 FRAMES AND MACHINES

o Force Representation and Free-Body Diagrams

Vector
notation

) Siig 50 (0 — SilSo | oo 00 SCiS 1S
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Sample Problem 4/6

The frame supports the 400-kg load in the manner shown. Neglect the
weights of the members compared with the forces induced by the load and com-
pute the horizontal and vertical components of all forces acting on each of the

members.

A_
Ax-(—i

-

0.4(9.81)

=3.92kN
Di!"'-\h;

[SM, = 0]
[SF, = 0]
[SF, = 0]

Section 2 - Statics Review

-
S

=

I~

o
o
B

=
&

=l
o w |
a

-5t

>
I

5.5(0.4)(9.81) — 5D =0
A, —432 =0
A, —392 =0

eat= ) Sg 50 (w30 — Sl  cwdigon 0uSLils
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r!ﬁ _L_~05mf
E g
400 kg
D = 432kN
A, =432kN
A, =3.92kN
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=

| 05 m®

e

55
o ol |
l’J' T
.

«» Member BF: i

[EMp = 0] 3.92(5) — %Ex(S} =0 E,. = 13.08 kN I 400 kg
[ZF, = 0] B, +3.92 — 13.08/2=0 B, = 2.62 kN
3.92 kN
[ZF, = 0] B, + 392 -13.08=0 B, =9.15kN Ay=8.92
3.92 kN
i B
A= | 3.92 kN 3.92 kN
e R Al — AN 4.321{1\1392 3.92 kN
[XM- = 0] 4.32(3.5) + 4.32(1.5) — 3.92(2) — 9.15(1.5) =0 B ——— \t
V| e e, —)] y
[XF, = 0] 432 - 1308 +9.15+392+432=0 1 B, + 1 309 kN
=C B
[ZF, = 0] —13.08/2 + 262+ 392=10 27 C, Y 0
7/’ E
1 // X
C P

K, ) Siig 50 (0 — SilSo | oo 00 SCiS 1S
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Sample Problem 4/9 02m. 04m

In the particular position shown, the excavator applies a 0.1m D
20-kN force parallel to the ground. There are two hydraulic 04m ~s—rpr ' L 2
cylinders AC to control the arm OAB and a single cylinder 0.28 m/"'—f T = =
DE to control arm EBIF. (a) Determine the force in the hy- 045m” T DR
draulic eylinders AC and the pressure psc against their pis-
tons, which have an effective diameter of 95 mm. (b) Also
determine the force in hydraulic cylinder DE and the pres- 35m
sure ppg against its 105-mm-diameter piston. Neglect the H
weights of the members compared with the effects of the

20-kN force. E : 20 kKN

[EMy = 0] —20000(3.95) — 2F ¢ cos 41.3°(0.68) + 2F;sin 41.3°(2) = 0

welp  F,c = 48 800 N or 48.8 kN l0.68m

F
=l PAC = AAC = el = 6.89(10°) Pa or 6.89 MPa
A

c (0.0952)
Ty

3.95m
] - 41.3°

04 +0.28 +0.55

o =tan! ( 14

_20kN

—
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[EMp = 0] —20000(3.5) + Fpg cos 11.31°(0.73) + Fpgsin 11.31°%(0.4) = 0

== Fpp = 88100 N or 88.1 kN

FDE

88 100

= 10.18(10%) Pa or 10.18 MPa ___E

—> Prg = App =(

dfféwf)

™

0.105%

4

) 0.73m/|

3.50m

20 kN
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5.1 INTRODUCTION

2 Actually, “concentrated” forces do not exist in the exact sense, since
every external force applied mechanically to a body is distributed
over a finite contact area, however small.

Enlarged view
of contact
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5.1 INTRODUCTION

When forces are applied over a region whose dimensions are not
negligible compared with other pertinent dimensions, then we must
account for the actual manner in which the force is distributed.

We do this by summing the effects of the distributed force over the
entire region using mathematical integration.

This requires that we know the intensity of the force at any location.

&)
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5.1 INTRODUCTION

2 There are three categories:

< (1) Line Distribution

< (2) Area Distribution

< (3) Volume Distribution

&)
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5.2 CENTER OF MASS

If we suspend the body from any point the body will be in equilibrium
under the action of the cord tension and the resultant W of the gravitational

forces acting on all particles of the body.

If we repeat for other points, the center of gravity (CG) will be determined

by intersection of these lines.

Al'B a B 3|
. A BC
a %49 Rdl-.
1 \\ |
W W W

&)

dc-‘?w,) \&Jsﬁ'&owjb_‘;é&obdﬁ“&o!s".b
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5.2 CENTER OF MASS

Determining the Center of Gravity

The moment of the resultant gravitational force W about any axis equals
the sum of the moments about the same axis of the gravitational forces dW
acting on all particles.

|
|
| G
[xdW [ydW [de :
=W Y T w } Yaw lW
y
| | |
[ x dm [y dm [z dm L _ \xl\7 z
:E — ?: = E: -\ .__j E x}
m m m NPT
b A N y

= ) g 50 gy — Slo  cwtigeo 0SS
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5.2 CENTER OF MASS

2 Using symmetry in CG determination

L
e

&)
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5.3 CENTROIDS OF LINES, AREAS, AND VOLUMES

2 (1) Lines
dm = pA dL
~ jde ~ jydL _ jzdL‘\
L YTL T L

&)
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5.3 CENTROIDS OF LINES, AREAS, AND VOLUMES

0 (2) Areas
dm = pt dA
J.di J.ydA J.sz
¥=Ty y="72 =74

&)
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5.3 CENTROIDS OF LINES, AREAS, AND VOLUMES

2 (3) Volumes

dm = pdV

;
|
|
- G
: *dW lW
) jxdv B fydv ) fzdv | | ey
= Ny = z = | 2'/_,/’}’
Vv vV vV | -
o™ }' X
N —)
\/y

=

&)
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5.5 COMPOSITE BODIES AND FIGURES; APPROXIMATIONS

2 When a body or figure can be conveniently divided into several parts
whose mass centers are easily determined, we use the principle of
moments and treat each part as a finite element of the whole.

?3
[m.l T My + mS}X = ml:fl + THQEE + mgfg - X ,l
e ~ ~ R TS / ,/
e Smx v >my 7 Smz 1, | ;
- Im - Im - Im o | La s G 1\
9 . Gy \ } Gy

&)

JMWI, ) g o (o — S0 wdsigo 0uSils




Sample Problem 5/6

Locate the centroid of the shaded area.

Section 2 - Statics Review

A x y XA yA
PART in.2 n. in. in3 in?
1 120 6 b 720 600
2 30 14 10/3 420 100
3 —14.14 6 1.273 —84.8 —18
4 —8 12 4 —96 —32
TOTALS 127.9 959 650
[  SAx| = 959 ]
# _X— A | X= 1279 7.50 1in.
[ 3 YAy - 650 ]
# _Y— SA | Y= 127'9—5.{}8 n.

dfféwf)
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5.6 BEAMS - EXTERNAL EFFECTS

Beams are structural members which offer resistance to bending due to
applied loads.

Beams are undoubtedly the most important of all structural members, so it is
Important to understand the basic theory underlying their design.

We must:

First, establish the equilibrium requirements of the beam as a whole and any
portion of it considered separately.

Second, we must establish the relations between the resulting forces and the
accompanying internal resistance of the beam to support these forces.

&)
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5.6 BEAMS - EXTERNAL EFFECTS

Types of Beams: | | |
Statically determl!’]ate beams ] . — m [E— -
v"External support reactions can be calculated by the Continuous
methods of statics alone are called. | J | 4
| | =
. . ) ‘ Cantilever ‘ _
Statically indeterminate beams End-supported cantilever
v"Has more supports than needed to provide .L v | 4 |
equilibrium o — | | | |
v"Load-deformation properties should be considered Combination | Fixed
to calculate external su pport reactions Statically determinate beams ~ Statically indeterminate beams

&)
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5.6 BEAMS - EXTERNAL EFFECTS

2 Distributed Loads
< Broking to simple cases

v" Constant
L
v" Rectangular T/W‘ \
v Triangular = S
A C D _Q
A B Ry=Lw,—w,L
2L/3—
Ry=w,L !
—L/2—1 1/ —D-l l
| B =wL «:—ZL;’S—H | \
L
. L L | | L |
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5.6 BEAMS - EXTERNAL EFFECTS

o Distributed Loads
< General distribution

_ R p
4, X | T
R = dex : dR:u_de\\ :
| 1| §
J-xw dx | w
= _ | ' [ W i
I | ‘
|
|

&)
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Sample Problem 5/11

Determine the equivalent concentrated load(s) and external reactions for
the simply supported beam which is subjected to the distributed load shown.

Section 2 - Statics Review

4 < 6 -
T | 280 s
1201/, [ 111 HH
[EM, = 0] 1200(5) + 480(8) — Rp(10) = 0 A LB
Rp=9841b
2(160)(6)= 450 Tb
My = 0] R4(10) — 1200(5) — 480(2) = 0 = iwf-”’ _,i,ﬂ;so bt
R, = 696 1b 120 Ib/ft I 120 Ib/t
A Y B
(120) (10) = 1200 1b
12001 4801b
5 3
. F 4 .
RA )tRB
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5.7 BEAMS - INTERNAL EFFECTS

2 In addition to supporting tension or }
compression, a beam can resist:
o \%
< Shear Shear
< Bending &)
< Torsion )
Bending
v" These effects represent the vector components 0
of the resultant of the forces acting on a G
transverse section of the beam. Torsion
o

)

M
v
Combined loading @
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5.7 BEAMS - INTERNAL EFFECTS

< The conventions for positive values of shear V and bending moment M :

+V
+M ? +M

+V

< Physical interpretation of the bending couple M :

T
Ty
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Sample Problem 5/13 4kN
Determine the shear and moment distributions produced in the simple | 6 m I’ 4m |
beam by the 4-kN concentrated load. . ]
5 — o
4 kN
R, =16kN Ry; = 24kN y
|
| 1
[SF, = 0] 16-V=0 V=16kN L | -
[SMp, = 0] M-16x=0 M-16x T | T
R, =16kN R,=24kN
[EF, = 0] V+24=0 V=-24kN
¥ v
[ZMp, = 0] —(24)(10 —x) + M =0 M= 24(10 — x) | ! u
| M
X ? lﬂxf
1%
1.6 kN 24 kN
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Sample Problem 5/13 4kN

Determine the shear and moment distributions produced in the simple 6 m I’ 4m
beam by the 4-kN concentrated load.

R, =16kN Ry, = 24 kN

[SF, = 0] 16-V=0 V=16kN

[SMp, = 0] M-16x=0 M=16x

[SF, = 0] V+24=0 V=-24kN
[SMg, =01  —(24)(10 —x) +M=0 M=24(10 — x)
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APPENDIX D

rsinG

al
Il
|

e

Arc Segment T—e |

s |
-
S

Quarter and Semicircular Arcs

A -
:B\_i_/[ﬂb\ §=§ _
L___ Wl __ 7

]

Circular Area x it
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4
) Leh =i
Semicircular +T Y= - *lg 9rx
Area r.ly
LY ——X sz_?"*
- 4
_,.4
[.=1 =%
d S ART:
|
— _— _4r - = a 4 4
x=y==L I=j=___]
Quarter-Circular - 3 * Yl 9x
Area
I =ﬂ
8
4
2 Ix=%fa—%sin2m
(N )
Area of Circular | .y x =§ rstlxna L= + L sin 20)
Sector 2
Iz:%r"o:
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Rectangular Area I = itE
Jr'ln : 3
|
| . = _ bi®
C = =
111 - —f=——tx — *T 12
i
——x
7 — bhgo. 4o
, L= b2+h?
Lo b
s -ath £ 192
3
Triangular Area 7 = bh?
36
j=x
3 bi’
b=
Area of Elliptical 1 -7ab® 7 _ (i - i]gbs
Quadrant T -4a x i’ 118 97
| 37
3 —_
| =T L= (-2 a®
- _ 4 16 16 97
bl x C Y = 3_
— W
v L =702, 52
. o := g (a )
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APPENDIX D
Subparabolic Area , a_bs
b S|
_p2_ 2 2 = _ 3a
y R Sy
| a’b
AreaA =20 b=+
3 | < o |b y =3
e — oy In
Ay 10 a.":l. bE
| (B4 I = ab|—+—
//: o z=4 (5 91
2ab®
I ==
= 3a T
8
2a°b
I, = —
_ a3 15
Y E I ng(az ke
= 2ab{f5 )
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APPENDIX D
I. .= %mr2 + 1—12m,.i,'2
Tl Circular
Cylindrical — I = %mrz + %mjﬂ
Shell T

I.,=mr?

I.=1,
= %m:"2 — 1—12m,£2

er"1-"'1 - IJ'|J'|
i=Z — Lp? 4 L2

I, =mr?
-

Circular
Cylinder rpxy
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APPENDIX D
IL.=1,
_1 2
I = gmr® + yoml
L 3 TN\
Y 2 q{_‘ 2_#_____ Irixl - IJ"IJ"L
z -7\ W Semicylinder X = % = %?m‘z +gmi®
) y
| y1 | I, = %er
X
L3
7 —(1_16
=7 \2 9712) mr

h '
z- “”G*<
a y

A J'1|

¥z ¥

~ Rectangular
Parallelepiped

_ 1 49 1
I, =7gmb +3mi2
_1 24 72
irj,gjrg 3m(;fr + 1%
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\

Spherical

— _2
Shell L. = gmr®
. — ,
& ol 1T
Hemispherical =T

| Shell 2 -7 =5
7 ¢ Ly, =1 =q5mr’
X

FFFF Sphere — I.= %ms"2
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2
L.=1,=1_=2%mm

~7 _
g — e A
-\. :\y Hemisphere x = %
7 T 83
1: I},},—Izz—mmrz
I
I g |
27T 1
| _ 12
Lﬁ Uniform — b =g
- . Slender Rod 1
| 5 G \ I:I-’L o Emﬂﬂ
AN y
Y1
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xr=y
Quarter- g I, =1, = Im?
Circular Rod _or
m I, =mr?
I.= imaz + %mlz
L, = gmb* + {yml
Elliptical - w4 12
Cylinder - im{ﬂz )
Ly, = %mbz + %mjz
X
I,, = %mrz + %mh.z
1 1
I, =-<mr®+ zmh®
Conical s_2h o 4 6
Shell 3 L, = L
fﬂ, = %mrz + %mhz

eat= ) Sg 50 (w30 — Sl  cwdigon 0uSLils




Section 2 - Statics Review

APPENDIX D
I.=1,
= %mr2 + %mhz
_ 4 _
Half = anr lexi ii’ 1¥1 1
Conical = Em:"2 + Emhz
Shell X
- 2 l
2= E Izz - g FZ
T 1 16
=== —|mr?
= (2 91:2)
L, = %mr‘z + %mhﬂ
. _ 3 1
Right — _3h L, = gomr* + ygmh®
= Circular =" \
y Cone I,=2mr
FJ'_'I-' = %mr‘z + %mhz
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APPENDIX D

L,

x IJ‘J‘

= zg—ﬂmrz + %mhz

|
| ™~ _r le-fl N IJ'IJ"I
> T 3 1. 39
i - Half Cone __ 3k =ggmr? + ygmh
] ¥ vy
Xy J1 l Izz = ]-S—Dmr?
Fi 3 _ 1
= (m 1.-2) mr®
I, = %m{az + %)
z= % I_= %m[az + b?)
Semiellipsoid I =1im@? + 192
W= § 64
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Ix‘r - %mbz + %mcg
L, E—limaz + %mcz
— Elliptic _ 2 1.
Paraboloid T3 I, = gmia® + b%)
I. =%m(62 [ %.‘:2)
- X E_y:v = E—];m(az + %CZ}
I, = =m(®?® + c?
z xx ]_Dm{ i )
‘ —_a I,= %m[az +c%)
x -_—
4 1
= Loia2
€ Rectangular 5= b I, = ygmia® + b?)
- Tetrahedr 1 _
X — a * etrahedron o jxx %m{bz_,_cg)
£ =—
} 4 _
’ T =3 m@®+cd
30
rd S
! 1 = a3 24 B2
=2 = ggmla® + %)
z
1 5
| L ! Half T, = a’ + 4R? Le=1,= Emﬂz * Emtﬁ
O +-r o 2R I. = mR? + 3ma?
y YA " = 3
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6.1 INTRODUCTION

We have usually assumed that the forces of action and reaction between
contacting surfaces act normal to the surfaces. This assumption characterizes
the interaction between smooth surfaces.

Although this ideal assumption often involves only a relatively small error,
there are many problems in which we must consider the ability of contacting
surfaces to support tangential as well as normal forces.

Tangential forces generated between contacting surfaces are called friction
forces and occur to some degree in the interaction between all real surfaces.

Whenever a tendency exists for one contacting surface to slide along another
surface, the friction forces developed are always in a direction to oppose this
tendency
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6.1 INTRODUCTION

Friction forces are present throughout nature and exist in all machines no

matter how accurately constructed or carefully lubricated.

A machine or process in which friction is small enough to be neglected is
said to be ideal. When friction must be taken into account, the machine or

process is termed real.

In all cases where there is sliding motion between parts, the friction forces

result in a loss of energy which is dissipated in the form of heat.

Wear is another effect of friction.
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6.2 TYPES OF FRICTION

(a) Dry Friction:
Dry friction occurs when the unlubricated surfaces of two solids are

In contact under a condition of sliding or a tendency to slide. This
type of friction is also called Coulomb friction.

(b) Fluid Friction:

Fluid friction occurs when adjacent layers in a fluid (liquid or gas)
are moving at different velocities.

(c) Internal Friction:

Internal friction occurs in all solid materials which are subjected to
cyclical loading.
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6.3 DRY FRICTION

2 Mechanism of Dry Friction

mg
| Impending
Y motion
m —>P > P |
Static | Kinetic
F F| friction | friction
| (no motion) | (motion)
n ﬂ:\\ I |
: NL NR ~Fnax = N /’—rFk=PkN
| ===
—_—— -+ — -Q ;E |
1 I 1 | :
| | | |
Ry g, Rs P
/U : the coefficient of static friction — [ Fo =p. N]

@ =P F < p N
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6.3 DRY FRICTION

Kinetic Friction

After slippage occurs, a condition of kinetic friction accompanies the
ensuing motion.

Kinetic friction force is usually somewhat less than the maximum static
friction force.

The kinetic friction force Fy is also proportional to the normal force.

v L : the coefficient of kinetic friction o [F# = M#N]
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6.3 DRY FRICTION

o Some typical values of coefficients

CONTACTING SURFACE STATIC, u, KINETIC, w,,
Steel on steel (dry) 0.6 0.4
Steel on steel (greasy) 0.1 0.05
Teflon on steel 0.04 0.04
Steel on babbitt (dry) 0.4 0.3
Steel on babbitt (greasy) 0.1 0.07
Brass on steel (dry) 0.5 0.4
Brake lining on cast iron 0.4 0.3
Rubber tires on smooth pavement (dry) 0.9 0.8
Wire rope on iron pulley (dry) 0.2 0.15
Hemp rope on metal 0.3 0.2
Metal on ice 0.02
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6.3 DRY FRICTION

Types of Friction Problems

1) The condition of impending motion is known to exist.
v Body is in equilibrium and on the verge of slipping

v" Friction force equals the limiting static friction: ~ Fmax = LGN
2) Neither the condition of impending motion nor the condition of motion is known to exist.
v First assume static equilibrium and then solve for the friction force F
(@) F<(Fmax=p,N): The body is in static equilibrium as assumed.
(b) F = (Fmax=p, N): Motion impends, the assumption of static
equilibrium is valid.
(c) F > (Fmax=p,N): The assumption of equilibrium is therefore invalid,
and motion occurs.
3) Relative motion is known to exist between the contacting surfaces
v Kinetic coefficient of friction clearly applies F=N
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Sample Problem 6/1

Determine the maximum angle # which the adjustable incline may have
with the horizontal before the block of mass m begins to slip. The coefficient of
static friction between the block and the inclined surface is pu..

[EF, = 0] mgsin —F=10 F=mgsin#
[ZF, = 0] —mgcosfl + N=10 N = mg cos 6 \ W=mg
\
mep F/N = tan 6
F=Fauw = pN. x""#j
# Iu-'s:tangma_x J”Hﬂé F N

=P O, = tan " p,
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Sample Problem 6/2

Determine the range of values which the mass m, may have so that the 100-kg
block shown in the figure will neither start moving up the plane nor slip down
the plane. The coefficient of static friction for the contact surfaces is 0.30.

[SF, = 0] N—-981c0s20°=0 N =922N
[Fo = N F.. = 0.30(922) = 277N
[SF,=0] my(9.81) — 277 — 981 sin 20° = my = 62.4 kg

[SF,=0] my(9.81) + 277 — 981sin20°=0  m, = 6.01 kg
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X
T=myg
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P Fimax
20° N
Case |
¥
\\981 N .
F T'=myg
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