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The forces of interaction between the rotating
blades of this jet engine and the air which passes
over them is a subject which is introduced in this
chapter.




Chapter 4 - Kinetics of Systems of Particles

a1 | Introduction

In the previous two chapters, we have applied the principles of
dynamics to the motion of a particle.

Our next major step in the development of dynamics is to extend these
principles, which we applied to a single particle, to describe the motion
of a general system of particles.

Recall that a rigid body is a solid system of particles wherein the
distances between particles remain essentially unchanged.
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32 | Generalized Newton’s Second Law

2 Considering n mass particles bounded by a closed surface in space

< Forces F1, F2, F3, . . . acting on m; from sources external to the envelop
< Forces 1, f2, f3, . . . acting on m; from sources internal to the system boundary
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dcf,(ﬂ"/'n, Saolins w30 — SLlKe  owadipe s0Siils e




Chapter 4 - Kinetics of Systems of Particles

32 | Generalized Newton’s Second Law

o The center of mass G of the isolated system of particles

mr = Zm;r; m = Xm,

2 Newton’s second law when applied to m; gives:

F1+F2‘|’F3‘|’"‘+f1‘|’fg‘|’f3+“*:m§i;f

0 Substitution into the summation of the equations of motion gives:

>F = mr or F=ma

SF, = ma, SF, = ma, >F. = ma,

&)
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a3 | Work-Energy

Work-Energy Relation

(U1-2).i = ﬁTE » U1_2 = AT or Tl == U1_2 = Tz

Uls=AT+ AV | | T+ Vi + Uz o =T + V,

< For arigid body or a system of rigid bodies joined by ideal frictionless connections, no
net work is done by the internal interacting forces or moments in the connections.
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a3 | Work-Energy

Kinetic Energy Expression B, L
Fl%m; ff3
1 2
f1

T=2%x §miv,;2

System
boundary

V,=V+p

1 1 o . o . P (arbitrary)
i T = Egmivi-v- = Z—m-(V +p) (V+p;) O (fixed) o
—Z m;v? + Xz mlp;\2+2mﬁ'éi

Because p; is measured from the mass center, Zm;p; = 0

— T=§m + 25 m|f:>t|2
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a4 | Impulse-Momentum

Linear Momentum

G=Zm;(v+p,)=Zm;v+ —Emlpt %

= vVXim; +7(0) r,

O (fixed)
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System
boundary

P (arbitrary)
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| 41(
H, = X(x; x mv;) + Z(x; X m;v;) )

™ P (arbitrary)
O (fixed)

2(r; x ma;) = 2(r; X F))

a4 | Impulse-Momentum

Angular Momentum

Fs3
F2
About a Fixed Point O. F £,
m,; f2
f1

HO = E(I‘i X m,;vi)

System
boundary

* EMO = HO

&)
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.
o

a4 | Impulse-Momentum

Angular Momentum

Fs3
FQ.
About the Mass Center G. F £,
m,; f2
f1

HG = EPL X mil",;

System
boundary

HG = EPL X mz(f + P;) = EPL X mzf +sz X mip'i

™ P (arbitrary)
* O (fixed)
—f szipi
=P H;=2p, X m;p;
H; = 26; x m,(r + 8,) +Zp; X m;i, - | ZM, = H,
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.
o

P (arbitrary)

a4 | Impulse-Momentum

Angular Momentum

F;
Fy
About an Arbitrary Point P. Fl% f;
L f2
f1

HP = Zp; X mii'i - Z(E + p;) X mii'i

System
boundary

* HP=Hg+§XmV

rp

O (fixed)

SM, = IM, + p xIF

—» | ZM,=H; + p x ma
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a4 | Impulse-Momentum
Angular Momentum

About an Arbitrary Point P.

* HP=HG+§XmV

—» | ZMp=H, +p x ma
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ZMG = I:IG

c o >F =ma
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45 | Conservation of Energy and Momentum
Conservation of Energy

A mass system is said to be conservative if it does not lose energy by virtue
of internal friction forces which do negative work or by virtue of inelastic
members which dissipate energy upon cycling.

If no work is done on a conservative system during an interval of motion by

external forces (other than gravity or other potential forces), then none of the
energy of the system is lost.

AT + AV =0
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45 | Conservation of Energy and Momentum

Conservation of Momentum

2 The principle of conservation of linear momentum

G1=G2

2 The principle of conservation of angular momentum

(Hp)1 = (Hp)s or (Hg)1 = (Hg)o

&)
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SAMPLE PROBLEM 4/1

The system of four particles has the indicated particle masses,
positions, velocities, and external forces. Determine r, r, r, T, G,
Ho, Ho, HG, and HG'

J%¢$@

r

-

= 1b

2m aIm //
s
m 2o = ;l:/d F
T R
Kkﬁ\\\y// :z//4 T~
|
|

Zmix; m(2di — 2dj) + 2m(dk) + 3m(-2di) + 4m(dj)

xm; m + 2m + 3m + 4m
mx; —vi ] 2 j 3 k) +4 i
mit; _ m(-vi + vj) + 2m(vj) + 3m(vk) + 4m(vi) — 0(0.3i + 0.3j + 0.3K)
Zmi 10m
XF _Fi+F_ F . o
Sm; . 10m _ 10m 9
g_iroLJ..ld ure g_i:.alio (_s.w».\.o.eﬁo PRUSR K °
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Zd -~
— o g

1 11
T=% %m,;vf =5 [m(y/20)2 + 2mu? + 3mov? + 4mv?] = ?mv2

G = (Zm,)r = 10m(v)(0.3i + 0.3j + 0.3k) = mv(3i + 3j + 3k)
Hy) =Zr; x m;r; =0 — 2mvdi + 3mv(2d)j — 4mvdk

= muvd(-2i + 6j — 4k)
H, = M, = —-2dFk + Fdj = Fd(j — 2k)
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Chapter 4 - Kinetics of Systems of Particles

3m°/

—~ v —~

-~ L5 3 T
- F

[H; = Hy + p X mv]
H, = mod(-2i + 6j — 4k) — d(=0.4i + 0.2j + 0.2k) x

10mv(0.3i + 0.3j + 0.3k) = mvd(-2i + 4.2j — 2.2k)

[H, ==M, — p x ma]

. F
H; = Fd(j - 2k) — d(—0.4i + 0.2j + 0.2k) x 10m (M) (i +j)

— Fd(0.2i + 0.8 — 1.4k)
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SAMPLE PROBLEM 4/2

Each of the three balls has a mass m and is welded to the rigid equian- Y
gular frame of negligible mass. The assembly rests on a smooth horizon- :
tal surface. If a force F is suddenly applied to one bar as shown, deter- Om’
mine (a) the acceleration of point O and (b) the angular acceleration 6
of the frame. F ——

r

[XF = mal] Fi = 3ma a=ap=_——1

Hp = Hp = 3(mré)r = 3mr?)

I\_j 2 Gre]
i o _i 25 9 - Fb
[=M; = Hg] Fb = ar (3mr=f) = 3mr-6 S0 = -
0 I
= ﬂ ““C‘:_-:_

du‘?[‘ & '/’, &.i:.nl.a.lo Q¥ — t_{.ylio T R R PRSI K
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SAMPLE PROBLEM 4/3

Consider the same conditions as for Sample Problem 4/2, except that '1|"
the spokes are freely hinged at O and so do not constitute a rigid system.
Explain the difference between the two problems.

Solution The generalized Newton’s second law holds for any mass
system, so that the acceleration a of the mass center G is the same as
with Sample Problem 4/2, namely,

F m
—i

a:3m

Although G coincides with O at the instant represented, the mo-
tion of the hinge O is not the same as the motion of G since O will not
remain the center of mass as the angles between the spokes change.

Both 2M; and Hg have the same values for the two problems at
the instant represented. However, the angular motions of the spokes in
this problem are all different and are not easily determined.

dw ,:.'.o ,’, g_i..”_ol....a'd L}o_)b - &:.;ls.‘o (5"""“'{” IRUER K
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SAMPLE PROBLEM 4/4

A shell with a mass of 20 kg is fired from point O, with a velocity u =
300 m/s in the vertical x-z plane at the inclination shown. When it
reaches the top of its trajectory at P, it explodes into three fragments
A, B, and C. Immediately after the explosion, fragment A is observed
to rise vertically a distance of 500 m above P, and fragment B is seen
to have a horizontal velocity vz and eventually lands at point @. When
recovered, the masses of the fragments A, B, and C are found to be 5,
9, and 6 kg, respectively. Calculate the velocity which fragment C has
immediately after the explosion. Neglect atmospheric resistance.

t = u, /g =300(4/5)/9.81 = 2455

w?  1(300)(4/5)1”

_ = 2940
2% 2(9.81) o

h =

va = V2ghs = V/2(9.81)(500) = 99.0 m/s

vg = s/t = 4000/24.5 = 163.5 m/s

dw ,:.'.o ,’, g_i..”_ol....a'd L}o_)b - &:.;ls.‘o (5"""“'{” IRUER K
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[Gl = GQ] mv

MmMavy + MpgVpg + meve

20(300)(2)i = 5(99.0k) + 9(163.5)(i cos 45° + j sin 45°) + 6v
6v¢ = 2560i — 10405 — 495k
Ve = 427i - 173.4j — 82.5k m/s

ve = V(427)% + (173.4)% + (82.5)? = 468 m/s

du‘?[‘ & '/’, S.i:.nl.a.lo Q¥ — t_i:.alio T R R PRSI K
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SAMPLE PROBLEM 4/5

The 32.2-1b carriage A moves horizontally in its guide with a speed of
4 ft/sec and carries two assemblies of balls and light rods which rotate
about a shaft at O in the carriage. Each of the four balls weighs 3.22 1b. @ 80 rev/min
The assembly on the front face rotates counterclockwise at a speed of

80 rev/min, and the assembly on the back side rotates clockwise at a
speed of 100 rev/min. For the entire system, calculate (a) the kinetic
energy 7', (b) the magnitude G of the linear momentum, and (c) the
magnitude Hy of the angular momentum about point O.

, . 18 80(2x)
[lpl‘ = Urel = re] (Urel)]_,Q = E 60 = 12‘57 ft/sec 100 rev/min
12 100(27)
= —— = 10.47 fi
(Vrel)3.4 12 60 0.47 ft/sec
1, 1(322 3.22) 9
— = — 4 = 11.2 f '1
oMU 2(32-2+432’2 (4%) 0 ft-1b

dcf,(ﬂ"/'n, Saolins w30 — SLlKe  owadipe s0Siils @
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2 32.2 2 32.2
= 15.80 + 10.96 = 26.8 ft-1b

: 13.22 1 3.22 _
E%mi|pi|2—2 !—3—(12 57)2] +2 !—3—(10 47)2] @ 80 rev/min
(1,2) (3,4) /

T = imv? +Z3my| ;> = 11.20 + 26.8 = 38.0 ft-Ib

100 rev/min

(G = mv]

G- (322 322
32.2 32.2

)(4) 5.6 1b-sec

HO = eri X mivi‘

3.22 3.22
HO_[2(322)( )(1257)L2) [2(322)( )(1047)](34)

= 3.77 — 2.09 = 1.676 ft-1b-sec

&)
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a6 | Steady Mass Flow

The dynamics of mass flow is of great importance in the description of
fluid machinery of all types including turbines, pumps, nozzles, air-
breathing jet engines, and rockets.

The treatment of mass flow in this article is not intended to take the
place of a study of fluid mechanics, but merely to present the basic
principles and equations of momentum.

One of the most important cases of mass fl ow occurs during steady-fl
ow conditions where the rate at which mass enters a given volume
equals the rate at which mass leaves the same volume.

&)
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a6 | Steady Mass Flow
Analysis of Flow Through a Rigid Container

< Consider a rigid container, shown in section in Fig. 4 /5a, into which mass
flows in a steady stream at the rate m’

< Conservation of mass:

P1A1V1 = peAgvs = m’

>F >F Am

Am
Time ¢ Time ¢ + At

g_i.:..oLJ..id u.,)o - &S.:.als.o (5”"“"'{"‘ IRUER K 6
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a6 | Steady Mass Flow

To describe the forces which act, we isolate either the mass of fluid
within the container or the entire container and the fluid within it.

v~ We would use the first approach if the forces between the container and the fluid
were to be described.

v We would adopt the second approach when the forces external to the container are
desired.

The latter situation is our primary interest, in which case, the system
Isolated consists of the fixed structure of the container and the fluid
within it at a particular instant of time.

dC-’éW’)
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a6 | Steady Mass Flow

Incremental Analysis

0 The expression for G™ :

AG = (Am)vy, — (Am)v; = Am(vy — Vvq)

G =m'Av {\ Zi Am
, , (Am dm
m' =Ilim|— ) =—
At—0 \ At dt

—p | ZF =m’Av

Am
Time ¢ Time t + At

&)
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SAMPLE PROBLEM 4/6

The smooth vane shown diverts the open stream of fluid of cross- v’
sectional area A, mass density p, and velocity v. (@) Determine the / /46

y
|
force components R and F required to hold the vane in a fixed position. : /)
(b) Find the forces when the vane is given a constant velocity u less /
R

——x

than v and in the direction of v.
v - r

Av, =v’' cos 8 — v =—-v(1l —cos 0) Fixed vane
Av,=v'sinf-0=vsinb
m' = pAv
wp [ZF,=m'Av,] —F = pAv[-v(1 — cos 9)]
F = pAv*(1 - cos 0)
=P [ZF,=m'Av,] R = pAvlv sin 6]

R = pAv?sin 0

L 2, Saalind oy — SLilSe  owdiges 0aSiiils @
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U
/s
o
—— —x
_ - u
Moving vane
Av, = (v —-u)cos0+ (u—-v)=—( —u)(1l--cosb)
Avy, = (v —u)sin 6
m’' =pAlv —u)
m [ZF, =m"Av,] —F =pA(w —u)[-(v —u)(1 - cos 0)]

F=pA( — u)*(1 - cos 0)

@ =P [ZF,=m'Av,)] R=pA(v —u)?sin 6

dff’l'/; 2, Saalind oy — SLilSe  owdiges 0aSiiils




a/7 | Variable Mass

Equation of Motion

Chapter 4 - Kinetics of Systems of Particles

< The mass of the body and its velocity at any instant are m and v.
< The stream of matter is assumed to be moving with a constant velocity v, less than v.

R=m'(v—-vy =mu

YXF — R =mv

=P |XF =m0+ mu

&)
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v

- Vo
/ N —_—
\ i~
m  m swallows mass (v > v)
(a)
Uo
= —
EF-(—< ~<R>
f-\‘s
m ®) m expels mass (v > vg)

m expels mass (v > vg)

(e)

g_i.:..oLJ..g‘d u.,)o - t_{.:.als.o (5w»)u..e,..o IRUER K 6
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SAMPLE PROBLEM 4/10

The end of a chain of length L and mass p per unit length which is piled
on a platform is lifted vertically with a constant velocity v by a variable
force P. Find P as a function of the height x of the end above the plat-
form. Also find the energy lost during the lifting of the chain.

%
. . P
Solution I (Variable-Mass Approach) /r 5
XF =P — pgx
Solution
. I
v=20 ‘l( pgx
m = pv
u=v-0=v i

wip [ZF=mid+mu]l P-pgx=0+pv(v) P=p(gx+v?

du‘?[‘ & '/’, S.i:.nl.a.lo Q¥ — t_i:.alio T R R PRSI K
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Solution II (Constant-Mass Approach) /'\P
EF—dG"‘ P (L —x) L—i( ) P= 2) Soluti
o=~ | P+pg(l—x)—pgl =" (pxv) P =plgx+v a

l psL
_— i

/l\pg(L - x)

U1_2=fpdx-AE=AT+AVg

L
f Pdx = f (pgx + pv2)dx = %ngz + pv’L
0

1 L 1
AT = évaz AV, = ngE = §ng2

&)
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