)
g

Semnan University

| Faculty of Mechanical Engineering

ENGINEERING MECHANICS
DYNAMICS

MERIAM, KRAIGE & BOLTON
9TH EDITION

Chapter 3: Kinetics of Particles




Chapter 3 - Kinetics of Particles

(0 CONTENTS:

Chapter 1: Introduction to Dynamics
Chapter 2: Kinematics of Particles

= <+ chapter 3: Kinetics of Particles

Chapter 4: Kinetics of Systems of Particles
Chapter 5: Plane Kinetics of Rigid Bodies

Chapter 6: Plane Kinematics of Rigid Bodies

&)

dCfoWb Jefol;%gw)g—‘:gﬁ;[&ob‘w*&powswb



C

APTER 3

Kinetics of
Particles

CHAPTER OUTLINE

31

Introduction

SECTION A Force, Mass, and Acceleration

3/2
33
3/4
3/5

Newton's Second Law

Equation of Motion and Solution of Problems
Rectilinear Motion

Curvilinear Motion

SECTION B Work and Energy

3/6 Work and Kinetic Energy

37

dfféwf)

Potential Energy

Saolud (o — Silso  cwdigen 005l

Jupiterimages/Getty Images, Inc.

Chapter 3 - Kinetics of Particles

The designers of amusement-park rides such

as this roller coaster must not rely upon the
principles of equilibrium alone as they develop
specifications for the cars and the supporting
structure. The particle kinetics of each car must
be considered in estimating the involved forces
so that a safe system can be designed.




Chapter 3 - Kinetics of Particles

CHAPTER 3

Kinetics of
Particles

SECTION € Impulse and Momentum

3/8 Introduction
3/9 Linear Impulse and Linear Momentum

3/10 Angular Impulse and Angular Momentum
SECTION D Special Applications

3/11 Introduction
3/12 Impact
3/13 Central-Force Motion

3/14 Relative Motion

3/15 Chapter Review The designers of amusement-park rides such
as this roller coaster must not rely upon the
principles of equilibrium alone as they develop
specifications for the cars and the supporting
structure. The particle kinetics of each car must
be considered in estimating the involved forces
so that a safe system can be designed.

Jupiterimages/Getty Images, Inc.

umti 2, Saolud (o — Silso  cwdigen 005l




31 | |ntroduction

According to Newton’s second law, a particle will accelerate when it
1s subjected to unbalanced forces.

Kinetics 1s the study of the relations between unbalanced forces and
the resulting changes in motion.

We combine our knowledge of the properties of forces, which we
developed in statics, and the kinematics of particle motion, and solve
engineering problems involving force, mass, and motion.
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31 | Introduction
General approaches to the solution of kinetics problems:

(A) Direct application of Newton’s second law

(called the force-mass-acceleration method)

(B) Use of work and energy principles

(C) Solution by impulse and momentum methods.
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Chapter 3 - Kinetics of Particles

secTionA Force, Mass, and Acceleration

32 | Newton’s Second Law

The ratios of applied force to corresponding acceleration all equal the
same number, provided the units used for measurement are not changed
In the experiments.

—=—=r=—=C, a constant

We conclude that the constant C is a measure of some invariable
property of the particle. This property is the inertia of the particle,
which is its resistance to rate of change of velocity.
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Chapter 3 - Kinetics of Particles

313 | Equation of Motion and Solution of Problems

A particle of mass m is subjected to the action of concurrent forces:

2F =ma

We usually express it in scalar component form with the use of one of
the coordinate systems.

The choice of an appropriate coordinate system depends on the type of
motion involved.
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Chapter 3 - Kinetics of Particles

33 | Equation of Motion and Solution of Problems

Two Types of Dynamics Problems

0 First type:

< The acceleration of the particle is either specified or can be determined
directly from known kinematic conditions.

0 Second type:

< The forces acting on the particle are specified and we must determine the
resulting motion.

&)
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Chapter 3 - Kinetics of Particles

313 | Equation of Motion and Solution of Problems

Constrained and Unconstrained Motion

Unconstrained motion:

The particle is free of mechanical guides and follows a path determined by its
initial motion and by the forces which are applied to it from external sources.

Constrained motion:
The path of the particle is partially or totally determined by restraining guides.

&)
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313 | Equation of Motion and Solution of Problems

Free-Body Diagram

The only reliable way to account accurately and consistently for every
force is to isolate the particle under consideration from all contacting
and influencing bodies and replace the bodies removed by the forces
they exert on the particle isolated.

The resulting free body diagram is the means by which every force,
known and unknown, which acts on the particle is represented and thus
accounted for.

Only after this vital step has been completed should you write the
appropriate equation or equations of motion.
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Chapter 3 - Kinetics of Particles

3/4 | Rectilinear Motion

o If we choose the x-direction, for example, as the direction of the
rectilinear motion of a particle:

2F. = ma,
2F, =0
2F. =0

o For cases where we are not free to choose a coordinate direction along

the motion:
LF, = ma,

LF, = ma,

@ >F, = ma,
Soolud wiyo — Sl  cwaigeo 0uLG1D @
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Chapter 3 - Kinetics of Particles

314 | Rectilinear Motion

o Acceleration and resultant force:

a=ad+aj+ak

_ 2 2 2
ﬂ—\/ﬂx +a,” +a,

SF = IF,i +XF,j +SF.k

|ZF| = V(ZF,)% + (IF,)? + (IF,)*

&)
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Chapter 3 - Kinetics of Particles

SAMPLE PROBLEM 3/1

A 75-kg man stands on a spring scale in an elevator. During the first
3 seconds of motion from rest, the tension T in the hoisting cable is
8300 N. Find the reading R of the scale in newtons during this interval
and the upward velocity v of the elevator at the end of the 3 seconds.
The total mass of the elevator, man, and scale is 750 kg.

y
|

[ZF, = ma,] 8300 — 7360 = 750a, @, = 1.257 m/s? |
" t T = 8300 N
[XF, = ma,)] R -736=75(1257) R=830N
a,
4
[Av = j a dt] v—0= f 1.257 dt v=3.7TTm/s
]

e

75009.81) = 7360 N

Soolud wiyo — Sl  cwadipen 0uSLSlS
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Chapter 3 - Kinetics of Particles

SAMPLE PROBLEM 3/2

A small inspection car with a mass of 200 kg runs along the fixed over-
head cable and is controlled by the attached cable at A. Determine the
acceleration of the car when the control cable is horizontal and under a
tension T" = 2.4 kN. Also find the total force P exerted by the supporting

cable on the wheels.

2F,=0]  P-24(;)-1962({3)=0 P=273kN
P o
[XF, = ma]  2400(15) - 1962({3) =200 a = 7.30 m/s’ el

T=24kN

W =mg = 1962 N

Soolud wiyo — Sl  cwadipen 0uSLSlS
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Chapter 3 - Kinetics of Particles

SAMPLE PROBLEM 3/3

The 250-1b concrete block A is released from rest in the position shown
and pulls the 400-1b log up the 30° ramp. If the coefficient of kinetic
friction between the log and the ramp is 0.5, determine the velocity of

the block as it hits the ground at B.

L = 2s; + s, + constant 0=2ac+ay
[3F,=0] N—-400c0os30°=0 N =23461b
SF, = 0.5(346) — 2T + 400 sin 30° = 20 SC)\
[2F, = ma,] . sin = 3999 V T
Sa
+| 3F = 950 — T = 22 e i
[ = ma | =399 as
A
ay = 5.83 ft/sec? ac = —2.92 ft/sec? T =2051b T
%T
[v? = 2ax] va = V2(5.83)(20) = 15.27 ft/sec , 2z .

|
2501b I+
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Chapter 3 - Kinetics of Particles

35 | Curvilinear Motion

o Rectangular coordinates:

2F, = ma,

2F, = ma,

2 Normal and tangential coordinates:

>F, = . . , ,
n = a,=pp°=v¥/p=vp, a=0, and v=pp

EFI = mda;

2 Polar coordinates:

&)
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Chapter 3 - Kinetics of Particles

SAMPLE PROBLEM 3/6

Determine the maximum speed v which the sliding block may have

as it passes the topmost point A without losing contact with the lower

surface. Assume a slightly loose fit between the slider and the con- A
straint surfaces.

A

2
[SF, = ma,] mg=m”; v = Jap l S

&)

dww” Saolnd (o — SEo (pwaigo suSiSld




Chapter 3 - Kinetics of Particles

SAMPLE PROBLEM 3/7

Small objects are released from rest at A and slide down the smooth cir-
cular surface of radius R to a conveyor B. Determine the expression for
the normal contact force N between the guide and each object in terms

of 6 and specify the correct angular velocity @ of the conveyor pulley
of radius r to prevent any sliding on the belt as the objects transfer to
the conveyor.

[ZF, = ma,] mg cos ) = ma; a, = gcos

~U -~

[vdv=ads] | vdo=| geos6d(RE)  v®=2Rsinf
0 0

2

SF. = ma N-mgsin0=m— N = 3mg sin 0
[ZF, n mg R mg
w = J2gR/r

dww” Saolnd (o — SEo (pwaigo suSiSld




Chapter 3 - Kinetics of Particles

SAMPLE PROBLEM 3/10

Tube A rotates about the vertical O-axis with a constant angular rate
6 = w and contains a small cylindrical plug B of mass m whose radial
position is controlled by the cord which passes freely through the tube
and shaft and 1s wound around the drum of radius 6. Determine the
tension T in the cord and the horizontal component F, of force exerted

by the tube on the plug if the constant angular rate of rotation of the
drum is @, first in the direction for case (@) and second in the direction

for case (b). Neglect friction.

[SF, = ma, ] —T = m(F — r§?)
[SF, = may,] F, = m(rf + 21
Case (a).
= +bwp7=0,andf=0  T=mre’  Fy=2mbow
Fy
Case (b).
F = —bwy, 7 =0,and 6 = 0, T =mre?  Fy= —2mbww

dww” Saolnd (o — SEo (pwaigo suSiSld




Chapter 3 - Kinetics of Particles

sectionB Work and Energy

356 | Work and Kinetic Energy
There are two general classes of problems:

(1) Integration of the forces with respect to the displacement of the particle

(2) Integration of the forces with respect to the time they are applied.

Integration with respect to displacement leads to the equations of work
and energy.

&)
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Chapter 3 - Kinetics of Particles

36 | Work and Kinetic Energy

Definition of Work

2 The work done by the force F during the displacement dr:
dU = F-dr
=P dU =F ds cos a

F,=Fcosa = dU=F,ds

"\ r+dr
=7 \ Fy
T B\ ge\EY
N.ﬂ'a\m

A ,..--"'" (b=
~"_FC
@ o
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Chapter 3 - Kinetics of Particles

36 | Work and Kinetic Energy

Units of Work

The SI units of work are those of force (N) times displacement (m) or N-m.

This unit is given the special name joule (J), which is defined as the work
done by a force of 1 N acting through a distance of 1 m in the direction of the
force.

Consistent use of the joule for work (and energy) rather than the units N-m
will avoid possible ambiguity with the units of moment of a force or torque.

&)
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Chapter 3 - Kinetics of Particles

36 | Work and Kinetic Energy

Calculation of Work

— —

2 2
U=f F-dr=j (F,dx + F dy + F.dz)
1 1 :

.--"'/-l

|

5q I
U:f F,ds ,/ | dU=Fds

8y |

|

|

I

51 89

&)
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Chapter 3 - Kinetics of Particles

36 | Work and Kinetic Energy

Examples of Work

0 Work Associated with a Constant External Force

2 2
U, = [ F-dr = [ [((Pcosa)i+ (Psina)j]-dxi
J1 J1

Xo

= [_Pmsadx = P cos alxy — x;) = PL cos a

-Il

y

L —x
! L |
@ 1 2
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Chapter 3 - Kinetics of Particles

36 | Work and Kinetic Energy

Examples of Work

o Work Associated with a Spring Force

Force F required to
stretch or compress spring

2 2 Xz
U,s = I. F-dr = I. (—kxi)-dxi = — [ kx dx = 113(3:12 — x52)
J1 J1

Jy, 2
F=kFkx
kx
e —=dr
Undeformed ~  @—m A %y xe *
position
F—x——=

A

o )

&)
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Chapter 3 - Kinetics of Particles

36 | Work and Kinetic Energy

Examples of Work
o Work Associated with Weight

2 2
U, :J F-dr=J (—mgj)- (dxi + dyj) ] 2
1 1
Ya dr
= —mgj dy = —mg(y, — v1) Yo mn T
My |
v —(1 mg L

&)
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Chapter 3 - Kinetics of Particles

36 | Work and Kinetic Energy

Work and Curvilinear Motion

2 85
UI—E = j Fdl‘ = J Ff dS
1 84

2 2
Uio = j F-dr :J ma-dr
1 1

2 0y
Upp = j F-dr = j mv dv = %m(yzﬁ —v,2)
1 0,

&)
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Chapter 3 - Kinetics of Particles

36 | Work and Kinetic Energy

Principle of Work and Kinetic Energy

0 The kinetic energy T of the particle:
T =

bo | =

0 The work-energy equation for a particle: T,+U,5,=T,

< The equation states that the total work done by all forces acting on a particle
as it moves from point 1 to point 2 equals the corresponding change in kinetic
energy of the particle.

&)
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Chapter 3 - Kinetics of Particles

36 | Work and Kinetic Energy

Power

o The capacity of a machine is rated by its power, which is defined as the
time rate of doing work

P =dU/dt = F-dr/dt = P=F-v

1W=1J/s
1 hp = 550 ft-1b/sec = 33,000 ft-lb/min
1hp =746 W = 0.746 kW

&)
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36 | Work and Kinetic Energy

Efficiency
The ratio of the work done by a machine to the work done on the machine
during the same time interval is called the mechanical efficiency €, of the

machine.
Pnutput

€n =
Pinput

In addition to energy loss by mechanical friction, there may also be electrical
and thermal energy loss, in which case, the electrical efficiency e, and
thermal efficiency e, are also involved. The overall efficiency € in such

instances is:
e = €,,€,€;

Soolud wiyo — Sl  cwaigeo 0uLG1D
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Chapter 3 - Kinetics of Particles

SAMPLE PROBLEM 3/11

Calculate the velocity v of the 50-kg crate when it reaches the bottom
of the chute at B if it is given an initial velocity of 4 m/s down the chute
at A. The coefficient of kinetic friction is 0.30.

— —E - Ry — = — "

[U = Fs] U,; = 50(9.81)(10 sin 15°) — 142.1(10) 151.9J 50(9.81) N
1 1

[T, + Uy = T;] EmUIE T U = §muf

1 2 1 2
1(50)(4)2 — 151.9 = 1(50)
2P 2 o uR=1421N =7

v = 3.15 m/s R 4TAN

&)
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Chapter 3 - Kinetics of Particles

SAMPLE PROBLEM 3/13

The 50-kg block at A is mounted on rollers so that it moves along the
fixed horizontal rail with negligible friction under the action of the con-
stant 300-N force in the cable. The block is released from rest at A, with
the spring to which it is attached extended an initial amount x; = 0.233 m.
The spring has a stiffness £ = 80 N/m. Calculate the velocity v of the
block as it reaches position B. |

A
x; = 0233 mtox, =0.233 +1.2=1433m T \i

Ups = 2k(x,2 — x,2) U, = £80[0.2332 — (0.233 + 1.2)2
2 2

= —80.0J |
300-N force J(1.2)2 + (092 — 09 =06m 300(0.6) = 180 J.
[Ty + Upp=T,] 0 — 80.0 + 180 = %{50}02 v = 2.00 m/s

Soolud wiyo — Sl  cwadipen 0uSLSlS
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Chapter 3 - Kinetics of Particles

SAMPLE PROBLEM 3/14

The power winch A hoists the 800-1b log up the 30° incline at a constant
speed of 4 ft/sec. If the power output of the winch is 6 hp, compute the co-
efficient of kinetic friction w;, between the log and the incline. If the power
is suddenly increased to 8 hp, what is the corresponding instantaneous
acceleration a of the log?

N = 800 cos 30° = 693 1b.

[SF,=0] T —693u, —800sin30°=0 T =693y, + 400

[P="Tuv] T = Plv = 6(550)/4 = 825 1b
825 = 693y, + 400 w, = 0.613 - *
800 1b T -

[P="Tv] T = P/ = 8(550)/4 = 1100 1b

[SF, = ma,] 1100 — 693(0.613) — 800 sin 30° = i a /

* * : 32.9 py N
30°
_ 2
w=pp a = 11.07 ft/sec N

&)
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37 | Potential Energy

Gravitational Potential Energy

o The gravitational potential energy V of the particle is defined as the
work mgh done against the gravitational field to elevate the particle a
distance h above some arbitrary reference plane.

— Ve=mgh
V,=mgh n
mg

OV, =0

&Vg = mg(hg - hl) = mg&h

&)
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37 | Potential Energy

Elastic Potential Energy

o The work which is done on the spring to deform it is stored in the
spring and is called its elastic potential energy V..

V, =f kx dx = ;—,kxg
0

AV, = Lh(e? - ) A —

&)
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Chapter 3 - Kinetics of Particles

37 | Potential Energy

Work-Energy Equation

< Work-energy equation modification to account for the potential-energy terms
Uis + (=AV,) + (=AV,) = AT

U:{_g - ﬁT + ﬂV

T1+V1+U{_Q=T2+V2

&)
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37 | Potential Energy

Work-Energy Equation

U = AT + AV

eat= Seolnd (o — Silso  owdigo 0uSCiild




Chapter 3 - Kinetics of Particles

37 | Potential Energy

Work-Energy Equation

< For problems where the only forces are gravitational, elastic, and nonworking
constraint forces:

T1+V1=TE+VE or E'l:EE

< E=T+V is the total mechanical energy of the particle and its attached spring.

&)
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37 | Potential Energy

Conservative Force Fields

o Conservative force fields: the work done against force depends only on
the net change of position and not on the particular path followed in

reaching the new position.
2

U= fF-dr = J(Fx dx+ F,dy + F, dz)
VE

- U,,= jv —-dV =—-(V, -V))

dV=a—de+a—de+£dz

dx ady dz
poo W g WV o W
0x ay dz ..

JLst=" Saolind (030 — Slo (oo AL
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37 | Potential Energy

Conservative Force Fields
0 The quantity V is known as the potential function.

= dV=a—de+a—de+£dz

dx dy dz
LA A 4
0x ay dz
d d d
Fz—vV vzf_—l-'_—l-k_ //
Pax oy T a2 -

JLst=" Saoligd (030 — Sl (mwiigen Sl




Chapter 3 - Kinetics of Particles

SAMPLE PROBLEM 3/16

The 6-1b slider is released from rest at position 1 and slides with neg-
ligible friction in a vertical plane along the circular rod. The attached
spring has a stiffness of 2 Ib/in. and has an unstretched length of 24 in.
Determine the velocity of the slider as it passes position 2.

V1=0

24
V, = —mgh = —6(12) = —12 ft-1b

e 24\
V= Ekxl = E{Z}{IQJ(E) = 48 ft-1b
_1; 2 _ 1, 24/2 24 o
Vi = gkxg = E{Z}{IQJ( o 12) = 8.24 ft-1b

[Ty + Vi + Uja =Ty + Vy] D+48+0=1(6

2\ 32.2

vy, = 23.6 ft/sec
dww” Sl s (o — S0 wdsgo 0usiSls

)uf — 12 + 8.24




Chapter 3 - Kinetics of Particles

SAMPLE PROBLEM 3/17

The 10-kg slider moves with negligible friction up the inclined guide.
The attached spring has a stiffness of 60 N/m and is stretched 0.6 m
in position A, where the slider is released from rest. The 250-N force is
constant and the pulley offers negligible resistance to the motion of the /\

cord. Calculate the velocity v, of the slider as it passes point C. ©

AB—BCor15—-09=06m. U= 250(0.6) =150

Va=0 Ve =mgh = 10(9.81)(1.2 sin 30°) = 58.9 .J

Vi =1kx2 = 1(60)(0.6)2= 1087

= b=

Ve = 5hxg? = 560(0.6 + 1.2)2 = 97.2.J

[Ta+Va+Uic=Tc+Ve] 0+0+10.8+ 150 = 2(10)uc? + 58.9 + 97.2

&)
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secTion ¢ Impulse and Momentum

38 | Introduction

We can integrate the equation of motion with respect to time rather than
displacement.

This approach leads to the equations of impulse and momentum.

These equations greatly facilitate the solution of many problems in
which the applied forces act during extremely short periods of time (as in
Impact problems) or over specified intervals of time.

&)
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Chapter 3 - Kinetics of Particles

3o | Linear Impulse and Linear Momentum
2 Linear momentum of the particle:

'1~G=mV 2
. d
Y — _
>F = mv dt(mv}
-»| XF =G

dww” Sl s (o — S0 wdsgo 0usiSls
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3o | Linear Impulse and Linear Momentum

The Linear Impulse-Momentum Principle

ty
G, + | IFdt=G, Gy=mv,

b & +

Force, F

£y
m(vy), + j SF. dt = m(vs),
ty

£y
m(vy), + j 2F, dt = m(vq),

£y

£y
m(vy), + j SF. dt = m(vy),
ty

21 ty
Time, ¢
Soolud wiyo — Sl  cwadipen 0uSLSlS
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39 | Linear Impulse and Linear Momentum

Conservation of Linear Momentum

o If the resultant force on a particle is zero during an interval of time, its
linear momentum G remain constant.

2 In this case, the linear momentum of the particle is said to be
conserved.

&GZO or G]_:Gz

Principle of conservation of linear momentum

&)
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Linear Impulse and Linear Momentum

Conservation of Linear Momentum

4th stage

3rd stage

L
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Chapter 3 - Kinetics of Particles

SAMPLE PROBLEM 3/20

A 2-1b particle moves in the vertical y-z plane (z up, y horizontal) under
the action of its weight and a force F which varies with time. The linear
momentum of the particle in pound-seconds is given by the expression

G = g—,[tz + 3)) —%{ta — 4)k, where ¢ is the time in seconds. Determine F
and its magnitude for the instant when ¢ = 2 sec.

z
- : d 3,9 s 2.3
IF = G] F—Qk:a[i(f +3]J—§{t - 4)k] F
= 3tj - 2t’k
Up
-2k 1b

F=2k+3(2)j — 2(22)k = 6j — 6k1lb ‘

F = 62+62=6 21b

&)
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Chapter 3 - Kinetics of Particles

SAMPLE PROBLEM 3/21

A particle with a mass of 0.5 kg has a velocily of 10 m/s in the x-direction
at time ¢ = 0. Forces F,; and F; act on the particle, and their magnitudes
change with time according to the graphical schedule shown. Determine
the velocity v, of the particle at the end of the 3-s interval. The motion
occurs in the horizontal x-y plane.

y
: F,N
4
| F,
—~—— —x 2
F; 10 m/s Ty
‘t % 1 2 3
. F2 f, =
Impulse-momentum diagrams:
m(vy), =0
t, mtﬂz)}.
F, dt
: 7 !
O=—= ¢ e— = (O=>mwy),
m(U]}x:
0.5 (10) kg'm/s

A

IZ
f Fydi
@ |

dww” Saolnd (o — SEo (pwaigo suSiSld




Chapter 3 - Kinetics of Particles

tz

[m(vy), + | SF,dt = m(vy),] 0.5(10) — [4(1) + 2(3 — 1)] = 0.5(vy),
t o
(vg), = —6 m/s | 8j m/s
vy =10 m/;
|
ts | 16, = 126.9°
[m(vy), + ; SF, dt = m(vy),] 0.5(0) + [1(2) + 2(3 — 2)] = 0.5(vy), | . R
1 =a8
A
(vg)y, = 8 m/s 81 \\
~5\\
61 \
vy = —61 + 8 m/s and v, = 6% + 8% = 10 m/s v ) *\
B t=2s"
\
8 r ’
6, =tan ' — = 126.9° t=18s
_'6‘ 0 l - — T ]
0 2 4 6
X, m

eat= Seolnd (o — Silso  owdigo 0uSCiild




Chapter 3 - Kinetics of Particles

SAMPLE PROBLEM 3/23

The 50-g bullet traveling at 600 m/s strikes the 4-kg block centrally and

is embedded within it. If the block slides on a smooth horizontal plane

with a velocity of 12 m/s in the direction shown prior to impact, deter-

mine the velocity v, of the block and embedded bullet immediately after 19
m/s

1
impact. 4kg | e

[G1 = Gg] 0.050(600) + 4(12)(cos 30% + sin 80%) = (4 + 0.050)vs (0o m | 600 m/s
v, = 10.26i + 13.33j m/s |
|

R , 16.83 m/s
(v =Jv,”+0v,2] vy=.,(10.26)% + (13.33)* = 16.83 m/s
13.23 L 8=524"
[tan 6§ = v, /v, ] tan @ = ——— = 1.299 6 = 52.4° R N
! 10.26 S x
1T
R

&)
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Chapter 3 - Kinetics of Particles

310 | Angular Impulse and Angular Momentum
o A particle P of mass m moving along a curve in space.

2 The velocity of the particle is v, and its linear momentum is G = mv.

2 The moment of the linear momentum vector mv about the origin O is
defined as the angular momentum H, of P about O.

(¥

A-\
Ho=rxmv H,=rxmv

Y

e
e
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Chapter 3 - Kinetics of Particles

310 | Angular Impulse and Angular Momentum
2 The scalar components of angular momentum:

Hp=r Xmv=mlv,y —v,2)i+ m(v,z —v,x)j + mlvy,x —v,y)k

1 J k
Ho=m|x vy =z
Uy Uy U,
H,=m(v,y —v,z) H,=m(v,z —v,x) H, =m(vyx —v,y)

&)
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Chapter 3 - Kinetics of Particles

320 | Angular Impulse and Angular Momentum

o Two- dimensional representation:

mv

Hy = mursin 6

View in plane A

&)
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Chapter 3 - Kinetics of Particles

320 | Angular Impulse and Angular Momentum

Rate of Change of Angular Momentum

o The moment of the forces acting on the particle P to its angular momentum

relation: _
SMo=rX ZF =r X mv

0 Hg Differentiation leads to:

Ho=rXmv+rXmv=vXmv+rXmv

< The moment about the fixed point O of all forces acting on m equals the time
rate of change of angular momentum of m about O.

&)
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Chapter 3 - Kinetics of Particles

320 | Angular Impulse and Angular Momentum

The Angular Impulse-Momentum Principle

0 The total angular impulse on m about the fixed point O equals the
corresponding change in angular momentum of m about O.

-1
J EMG df - (HG}E (Hﬂ:}l — ﬂHG
t

I3

(Hp); + | ZMdt = (Hp),

£y

t,

[HG_I}l + EMDI dt = (Hol)g

t

Iy
@ m(v,y —v,2) + f IMo dt = m(v,y —vy2)y
£y

JLst=" Saoligd (030 — Sl (mwiigen Sl




Chapter 3 - Kinetics of Particles

320 | Angular Impulse and Angular Momentum

Plane-Motion Applications

< Most of the applications can be analyzed as plane-motion problems where
moments are taken about a single axis normal to the plane of motion.

[:Hﬂjl = |l’.'1 X mV1| — mUldl

(Hp)g = |ry X mvy| = muyds

ts
(Hﬂ}l + J- EMD dt — (HDJE
4

(Ho)z = THUzdz

L
muqd, + L >Fr sin 0 dt = mv.d,

. o M e T ¥
(HO)] = mvldl
@ S M, = S Frsin®
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Chapter 3 - Kinetics of Particles

320 | Angular Impulse and Angular Momentum

Conservation of Angular Momentum

o If the resultant moment about a fixed point O of all forces acting on a
particle is zero during an interval of time, its angular momentum Hg,

about that point remain constant.

0 In this case, the angular momentum of the particle is said to be conserved.

AH,=0 or (H,),=(H,),

Principle of conservation of angular momentum

Soolud wiyo — Sl  cwaigeo 0uLG1D
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SAMPLE PROBLEM 3/24

Chapter 3 - Kinetics of Particles

A small sphere has the position and velocity indicated in the
figure and is acted upon by the force F. Determine the angular
momentum H, about point O and the time derivative H,.

Hy=r x mv

= (31 + 6§ + 4k) x 2(5j)
= —40i + 30k N-m/s

Hy = M,

&)

dfféwf)

=rxXF

— (3i + 6§ + 4k) x 10k

=601 — 30j N-m

2

|

|

|

|

|

|

|O
S~
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Chapter 3 - Kinetics of Particles

SAMPLE PROBLEM 3/26

The assembly of the light rod and two end masses is at rest when
it is struck by the falling wad of putty traveling with speed v,
as shown. The putty adheres to and travels with the right-hand
end mass. Determine the angular velocity 6, of the assembly
just after impact. The pivot at O is frictionless, and all three
masses may be assumed to be particles.

{HDJI - {HDJE
mu,l = (m + 2m)(16,)] + 4m(216,)21

Soolud wiyo — Sl  cwadipen 0uSLSlS
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Chapter 3 - Kinetics of Particles

sectionp Special Applications

311 | Introduction

o Several topics of specialized interest in particle kinetics:
< 1. Impact
< 2. Central-force motion

< 3. Relative motion

&)
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Chapter 3 - Kinetics of Particles

312 | |mpact

Direct Central Impact
2 Collision of two spheres with collinear motion

< Conservation of linear momentum: vy > Uy

. ; ; Before
mivy + MgUs = MUy + MgV impact

Maximum

Coefficient of Restitution deformation
during impact
UEI — U]_r
E f—
Vi1 — Ug

UI’ < Uz’
After impact — @ _

du‘?w’) Saolind (wyo — SHlo (cmwddpeo susiile @




3/12

Impact

Energy Loss During Impact

o Impact phenomena are almost always accompanied by energy loss,
which may be calculated by subtracting the kinetic energy of the system
just after impact from that just before impact.

Y .

JWW’)

Coefficient of
restitution, e

1 —

Chapter 3 - Kinetics of Particles

Perfectly elastic

Steel on steel

Lead on lead
Perfectly plastic

Relative impact velocity
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Chapter 3 - Kinetics of Particles

312 | |mpact

Oblique Central Impact
o Tangent and normal directions

my(vq )y = mq(vy' )y

my(vy); = my(vy' ),

my(vy), + my(vy), = my(vy'), + my(vy'),

o {UEF)H T (Ull}n

€~ (U]}n — (Ugjn

&)
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Chapter 3 -

SAMPLE PROBLEM 3/28

The ram of a pile driver has a mass of 800 kg and is released from rest
2 m above the top of the 2400-kg pile. If the ram rebounds to a height of
0.1 m after impact with the pile, calculate (a) the velocity v,” of the pile
immediately after impact, (b) the coefficient of restitution e, and (c¢) the

percentage loss of energy due to the impact.

= \-"I2§h

v, = 2(9.81)(2) = 6.26 m/s v, = /2(9.81)(0.1) = 1.40 m/s

800(6.26) + 0 = 800(—1.401) + 2400v,’ v," = 2.55 m/s , l
v, =0

Soolud wiyo — Sl  cwadipen 0uSLSlS
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2 m drop
0.1m
I] — rebound
!
v
Immediately
Before after
impact impact

ram




Chapter 3 - Kinetics of Particles

1 vel . 2 m drop
rel. vel. separation 255 + 1.401
o= D L .- — 0.631 0.1m
| rel. vel. approach | 6.26 + 0 I] rebound
1l |
N = Vg = mgh = 800(9.81)(2) = 15700 J U
T' = £(800)(1.401)* + (2400)(2.55)> = 8620 J Immediately
Before after
impact impact
15 700 — 8620 v | ram
100) = 45.1% Ty
5700 OV ‘

&)
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Chapter 3 - Kinetics of Particles

SAMPLE PROBLEM 3/29

A ball is projected onto the heavy plate with a velocity of 50 ft/sec at the
30° angle shown. If the effective coefficient of restitution is 0.5, compute

the rebound velocity v’ and its angle &'.

50 ft/sec n
\ | §
1 O | — —=
{Ugr}n_{ﬂ'l'}n 05 0_{1’1’}” \\7\ | d—:'_’__%,f"-f
€= . = T Ry *
(01)n — (V2)n —50 sin 30° — 0 E'rlﬂ” (=~ j’_
y 5 _, L — — #
(vy"), = 12.5 ft/sec
lw{{ F impact
m(vy), = m(vy'), (vy"); = (vy); = 50 cos 30° = 43.3 ft/sec O/
TFlmpact

v’ = J(v,"),2+ (v,)2 = J12.5% + 43.32 = 45.1 ft/sec

(W1 412,56
¢ — 1 = 1 = F
A’ = tan ({Ulhh) tan (43.3) 16.10

Soolud wiyo — Sl  cwadipen 0uSLSlS
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314 | Relative Motion

Relative-Motion Equation

o A particle A of mass m whose motion is observed from a set of axes X-y-z
which translate with respect to a fixed reference frame X-Y-Z.

a4 = ag + g

>F =m(ag + a,y)

&)
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Chapter 3 - Kinetics of Particles

314 | Relative Motion

D’Alembert’s Principle
The particle acceleration we measure from a fixed set of axes X-Y-Z, is its
absolute acceleration a. In this case the familiar relation £F = ma applies.

When we observe the particle from a moving system x-y-z attached to the
particle, the particle necessarily appears to be at rest or in equilibrium in x-y-z.

Thus, the observer who is accelerating with x-y-z concludes that a force —ma
acts on the particle to balance ZF.

@ I S N ¥
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Chapter 3 - Kinetics of Particles

314 | Relative Motion

D’Alembert’s Principle

o Example
Y Y
T | r |
g / gl
| / |
/ 2
n—-— / n—— - 71110

/ !

l (-ﬂ_‘:_\___ [

mg mg
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Chapter 3 - Kinetics of Particles

SAMPLE PROBLEM 3/32

A simple pendulum of mass m and length r is mounted on the flatear,
which has a constant horizontal acceleration a; as shown. If the pen-
dulum is released from rest relative to the flatcar at the position & = 0,

determine the expression for the tension T in the supporting light rod

for any value of 8. Also find 7 for 6 = /2 and 6 = 7. 0
R
r
a=ag T ag m
ﬂ-{]
I I — [ [ — I 3
[2F; = ma,] mg cos = m(rfl — a,sin f) )

rf = g cos @ + agsin @

.. . "rj. i 91
[0df =60do] J 6’dﬂ=J ;{gcosﬂ+aﬂsinﬂjd€
0 0
§2
E=%[g5in9+au{1—msﬂ}]
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Free-body
diagram

[EFR = maﬂ-]

Chapter 3 - Kinetics of Particles

Acceleration
components

T — mgsin # = m(ré? — a, cos )

= m[2gsin 6 + 2a,(1 — cos ) — a; cos 0]

T=m[3gsinf + ay(2 — 3 cos 0)]

T/ =ml3g(1) + a, (2 — 0)] = m(3g + 2a,)
T, =ml3g(0) + a, (2 — 3[-1])] = 5ma,

&)
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