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 According to Newton’s second law, a particle will accelerate when it

is subjected to unbalanced forces.

 Kinetics is the study of the relations between unbalanced forces and

the resulting changes in motion.

 We combine our knowledge of the properties of forces, which we

developed in statics, and the kinematics of particle motion, and solve

engineering problems involving force, mass, and motion.



❑ General approaches to the solution of kinetics problems:

❖ (A) Direct application of Newton’s second law

(called the force-mass-acceleration method)

❖ (B) Use of work and energy principles

❖ (C) Solution by impulse and momentum methods.
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❑ The ratios of applied force to corresponding acceleration all equal the

same number, provided the units used for measurement are not changed

in the experiments.

❑ We conclude that the constant C is a measure of some invariable

property of the particle. This property is the inertia of the particle,

which is its resistance to rate of change of velocity.
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❑ A particle of mass m is subjected to the action of concurrent forces:

❑ We usually express it in scalar component form with the use of one of

the coordinate systems.

❑ The choice of an appropriate coordinate system depends on the type of

motion involved.
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❑ First type:

❖ The acceleration of the particle is either specified or can be determined

directly from known kinematic conditions.

❑ Second type:

❖ The forces acting on the particle are specified and we must determine the

resulting motion.
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❑ Unconstrained motion:

❖ The particle is free of mechanical guides and follows a path determined by its

initial motion and by the forces which are applied to it from external sources.

❑ Constrained motion:

❖ The path of the particle is partially or totally determined by restraining guides.
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❑ The only reliable way to account accurately and consistently for every

force is to isolate the particle under consideration from all contacting

and influencing bodies and replace the bodies removed by the forces

they exert on the particle isolated.

❑ The resulting free body diagram is the means by which every force,

known and unknown, which acts on the particle is represented and thus

accounted for.

❑ Only after this vital step has been completed should you write the

appropriate equation or equations of motion.
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❑ If we choose the x-direction, for example, as the direction of the

rectilinear motion of a particle:

❑ For cases where we are not free to choose a coordinate direction along

the motion:
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❑ Acceleration and resultant force:
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❑ Rectangular coordinates:

❑ Normal and tangential coordinates:

❑ Polar coordinates:
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❑ There are two general classes of problems:

❖ (1) Integration of the forces with respect to the displacement of the particle

❖ (2) Integration of the forces with respect to the time they are applied.

❑ Integration with respect to displacement leads to the equations of work

and energy.
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❑ The work done by the force F during the displacement dr:
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❖ The SI units of work are those of force (N) times displacement (m) or N∙m.

❖ This unit is given the special name joule (J), which is defined as the work

done by a force of 1 N acting through a distance of 1 m in the direction of the

force.

❖ Consistent use of the joule for work (and energy) rather than the units N∙m

will avoid possible ambiguity with the units of moment of a force or torque.
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❑ Work Associated with a Constant External Force
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❑ Work Associated with a Spring Force
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❑ Work Associated with Weight
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❑ The kinetic energy T of the particle:

❑ The work-energy equation for a particle:

❖ The equation states that the total work done by all forces acting on a particle

as it moves from point 1 to point 2 equals the corresponding change in kinetic

energy of the particle.
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❑ The capacity of a machine is rated by its power, which is defined as the

time rate of doing work
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❖ The ratio of the work done by a machine to the work done on the machine

during the same time interval is called the mechanical efficiency em of the

machine.

❖ In addition to energy loss by mechanical friction, there may also be electrical

and thermal energy loss, in which case, the electrical efficiency ee and

thermal efficiency et are also involved. The overall efficiency e in such

instances is:
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❑ The gravitational potential energy Vg of the particle is defined as the

work mgh done against the gravitational field to elevate the particle a

distance h above some arbitrary reference plane.
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❑ The work which is done on the spring to deform it is stored in the

spring and is called its elastic potential energy Ve.
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❖ Work-energy equation modification to account for the potential-energy terms
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❖ For problems where the only forces are gravitational, elastic, and nonworking

constraint forces:

❖ E=T+V is the total mechanical energy of the particle and its attached spring.
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❑ Conservative force fields: the work done against force depends only on

the net change of position and not on the particular path followed in

reaching the new position.
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❑ The quantity V is known as the potential function.
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❑ We can integrate the equation of motion with respect to time rather than

displacement.

❑ This approach leads to the equations of impulse and momentum.

❑ These equations greatly facilitate the solution of many problems in

which the applied forces act during extremely short periods of time (as in

impact problems) or over specified intervals of time.
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❑ Linear momentum of the particle:

❖G = mv
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❑ If the resultant force on a particle is zero during an interval of time, its

linear momentum G remain constant.

❑ In this case, the linear momentum of the particle is said to be

conserved.

Principle of conservation of linear momentum
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Impulse-momentum diagrams:
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❑ A particle P of mass m moving along a curve in space.

❑ The velocity of the particle is v, and its linear momentum is G = mv.

❑ The moment of the linear momentum vector mv about the origin O is

defined as the angular momentum HO of P about O.
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❑ The scalar components of angular momentum:
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❑ Two- dimensional representation:
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❑ The moment of the forces acting on the particle P to its angular momentum

relation:

❑ HO Differentiation leads to:

❑ So:

❖ The moment about the fixed point O of all forces acting on m equals the time

rate of change of angular momentum of m about O.
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❑ The total angular impulse on m about the fixed point O equals the

corresponding change in angular momentum of m about O.
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❖ Most of the applications can be analyzed as plane-motion problems where

moments are taken about a single axis normal to the plane of motion.
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❑ If the resultant moment about a fixed point O of all forces acting on a

particle is zero during an interval of time, its angular momentum HO

about that point remain constant.

❑ In this case, the angular momentum of the particle is said to be conserved.

Principle of conservation of angular momentum
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❑ Several topics of specialized interest in particle kinetics:

❖ 1. Impact

❖ 2. Central-force motion

❖ 3. Relative motion
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❑ Collision of two spheres with collinear motion

❖ Conservation of linear momentum:
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❑ Impact phenomena are almost always accompanied by energy loss,

which may be calculated by subtracting the kinetic energy of the system

just after impact from that just before impact.
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❑ Tangent and normal directions
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❑ A particle A of mass m whose motion is observed from a set of axes x-y-z

which translate with respect to a fixed reference frame X-Y-Z.
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❖ The particle acceleration we measure from a fixed set of axes X-Y-Z, is its

absolute acceleration a. In this case the familiar relation ΣF = ma applies.

❖ When we observe the particle from a moving system x-y-z attached to the

particle, the particle necessarily appears to be at rest or in equilibrium in x-y-z.

❖ Thus, the observer who is accelerating with x-y-z concludes that a force −ma

acts on the particle to balance ΣF.
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❑ Example
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