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Even if this car maintains a constant speed
along the winding road, it accelerates laterally,
and this acceleration must be considered in the
design of the car, its tires, and the roadway itself.




Chapter 2 - Kinematics of Particles

21 | |Introduction

Kinematics is the branch of dynamics which describes the motion of
bodies without reference to the forces which either cause the motion or
are generated as a result of the motion.

Kinematics is often described as the “geometry of motion.”

A thorough working knowledge of kinematics iIs a prerequisite to
Kinetics, which is the study of the relationships between motion and the
corresponding forces which cause or accompany the motion.
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Chapter 2 - Kinematics of Particles

21 | |Introduction

Particle Motion

< Aparticle is a body whose physical dimensions are so small compared with the radius
of curvature of its path that we may treat the motion of the particle as that of a point.

Choice of Coordinates

< Rectangular coordinates X, y, z (Cartesian)

< Cylindrical coordinates r, 8, z

< Spherical coordinates R, 6, ¢

< Tangent t and normal n to the curve (path variables)

&)
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Chapter 2 - Kinematics of Particles

2;2 | Rectilinear Motion

o Particle P moving along a straight line

T +s
1

Velocity and Acceleration

< Average velocity of the particle during the interval At is the displacement divided
by the time interval or V,,, = As /At

&)
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Chapter 2 - Kinematics of Particles

2/2 | Rectilinear Motion
Velocity and Acceleration

_E:S

. . N\
< Instantaneous velocity ( ds .
b =
o vy

< The average acceleration of the particle during the interval At is the change in its
velocity divided by the time interval or a,, = Av /At.

- \
dv : ) d’s J

< instantaneous acceleration {‘1 T R T
J \

\S

—p | vdv=ads or sds =s5ds
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2;2 | Rectilinear Motion

Graphical Interpretations

(a)

(b)

Chapter 2 - Kinematics of Particles

Sg fz
j ds = j v dt or S — 87 = (area under v-f curve)
84 L3

&)
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Chapter 2 - Kinematics of Particles

2;2 | Rectilinear Motion

Graphical Interpretations

v a
| a
v | |
| ‘ | -
t] — t] —a =t tE
Uy tg
dv = J a dt or vy — vy = (area under a-t curve)
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Chapter 2 - Kinematics of Particles

2;2 | Rectilinear Motion

Graphical Interpretations

(a) (b)

|
|
=
w|
]
[¥]
,_E":'
T
1l
[#]
i
[¥5]

Us 83
1
J vdv = J a ds or E[ng — v,%) = (area under a-s curve)
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Chapter 2 - Kinematics of Particles

2;2 | Rectilinear Motion

Analytical Integration

2 (a) Constant Acceleration
H t
J-duzajdt or v =1Uvy+ at
U 0

[ E
J. vdv =a J. ds or v = vy? + 2a(s — sp)
L &

0 0

5 t
J ds = J (vg + at) dt or § =8+ uﬂt—i—%atz
8p 0

&)
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Chapter 2 - Kinematics of Particles

2;2 | Rectilinear Motion

Analytical Integration

0 (b) Acceleration Given as a Function of Time, a = f()

t

v 14
[du:[ﬂt}dt or U:U{.-l—[f{ﬂdf
Jo

= o <0

5 t t
[dsz[vdt or stﬂ—i—[udt
- - Jo
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Chapter 2 - Kinematics of Particles

2;2 | Rectilinear Motion

Analytical Integration

0 (c) Acceleration Given as a Function of Velocity, a = f(v)

[Udu=[ds or 5=5.}—|—[Udu

&)
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Chapter 2 - Kinematics of Particles

2;2 | Rectilinear Motion

Analytical Integration

0 (d) Acceleration Given as a Function of Displacement, a = f(s)

[.udu = [ f(s)ds or v = v,2 + 2[ f(s)ds

© Up T &p T ED

&)

JLst=" Saoligd (030 — Sl (mwiigen Sl




Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/1

s = 2t3 — 24t + 6, 38
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Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/3

The spring-mounted slider moves in the horizontal guide with negli-
gible friction and has a velocity v, in the s-direction as it crosses the
mid-position where s = 0 and ¢ = 0. The two springs together exert a
retarding force to the motion of the slider, which gives it an accelera-
tion proportional to the displacement but oppositely directed and equal
to a = —k’s, where k is constant. (The constant is arbitrarily squared
for later convenience in the form of the expressions.) Determine the
expressions for the displacement s and velocity v as functions of the
time ¢.

s
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Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/3

2 252
J- vdv = j —k%s ds + C, a constant, or Y °

=—+C

2 2 '
When s = 0, v = vy, so that C, = v,%/2

v = +w“!1.i'.]2 — k%s°
Vg . bt
ds 1.k 5= o
f = jdt + Cy a constant, or — 5111_1U—S =t + C, k
\-"IUUE — kESE k 0

v = vy cos kit

Solution ll. Since a = 8, the given relation may be written at once as

s+ k% =0

s = A sin Kt + B cos Kt v = Ak cos kt — Bk sin kt

v
@ 5= Eﬂ sin kt and v = vy cos kt
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Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/4

A freighter is moving at a speed of 8 knots when its engines are sud-
denly stopped. @ If it takes 10 minutes for the freighter to reduce its
speed to 4 knots, determine and plot the distance s in nautical miles
moved by the ship and its speed v in knots as functions of the time ¢
during this interval. The deceleration of the ship is proportional to the
square of its speed, so that a = —kv®.

~k?=—  — = —kdt

duv duv J'” dv .
dt v 8

v 8 Y71+ 8kt

8 ds [ 8dt [° 4
= = = — +
— = Jﬂ — JD ds s=—In(1+ 6t

&)
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Chapter 2 - Kinematics of Particles

2/3 | Plane Curvilinear Motion

0 Position Vector r

Path of !
particle |

Av :
I
v’ a
v \
A
F
4 A

dww” Saolnd (o — SEo (pwaigo suSiSld




Chapter 2 - Kinematics of Particles

2/3 | Plane Curvilinear Motion

Velocity

2 Average velocity of the particle between A and A’ is defined as V,,, = Ar /At

2 Instantaneous velocity (approaches tangent to the path)

2 The magnitude of v is called the speed and is the scalar

ds .
= =5

D= |V| =—]—=
vl=—
dff,wb S0l s (wyd — Slo | cwdogo susisls




Chapter 2 - Kinematics of Particles

2;3 | Plane Curvilinear Motion
Acceleration

2 The average acceleration of the particle between A and A’ is defined as Av /At

0 instantaneous acceleration

&)
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Chapter 2 - Kinematics of Particles

2/3 | Plane Curvilinear Motion

Visualization of Motion

Hodograph
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2/4

Vector Representation

- ™
r=xi+yj
v=r=ux1+y)
a=v=r=x1+Yy)
. iy
Uzzuxz—kuf
azzaf—k

Rectangular Coordinates (x-y)

Chapter 2 - Kinematics of Particles

Path
l
Y t
| —av
| v
| v/ |
. Va
J
L 0
f ."T
/ |A x
' r P
¥ P |
L
xi i
o 2 U}’
v = v+, tan @ = —
UI
2 _ [, 2 2
a, a=ya- + a,
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Chapter 2 - Kinematics of Particles

24 | Rectangular Coordinates (x-y)

Projectile Motion

An important application of two-dimensional kinematic theory is the
problem of projectile motion.

For a first treatment of the subject, we neglect aerodynamic drag and the
curvature and rotation of the earth, and we assume that the altitude change is
small enough so that the acceleration due to gravity can be considered
constant.

&)
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Chapter 2 - Kinematics of Particles

22| Rectangular Coordinates (x-y)
Projectile Motion
v, = (v v, = (vy)g — gt

x = xp + (0ot ¥ = yo + (vy)ot — 3gt°

U_}fz = {U}'}I}E T Qg(.}' _yﬂ}

V=

A=Y T v

- ., . X
o T
v S |

lg y———x—=p
\

™

™

] oy
@ (vy)g=vgcos O
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24 | Rectangular Coordinates (x-y)

Projectile Motion

Andrew Davidhazy

This stroboscopic photograph of a bouncing ping-pong ball suggests not only
the parabolic nature of the path, but also the fact that the speed is lower near

@ the apex.
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Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/5

The curvilinear motion of a particle is defined by v, = 50 — 16¢ and
y = 100 — 4¢%, where v, is in meters per second, y is in meters, and ¢ is
in seconds. It is also known that x = 0 when ¢ = 0. Plot the path of the
particle and determine its velocity and acceleration when the position

= 0 1s reached. t=0
Y 1000 S
14
\2
_ _ - . 80 i\
deszxdt} | dx=| 50-16ndt x=50t—8#m \
0 0 3
60
; /
: d -
= - £ (50 — 16t = —16 m/s?
[a, =0,] a, 7t ( ) ., m/s 40 ff
: d 20 g
[a, = ,] a, = N (—8t) a, = —8 m/s2 /

tzﬁs/
[} 1

0 20 40 5 60 80

[v,=y] v, = % (100 — 4¢%) v, = —8t m/s x,m

dww” Sl s (o — S0 wdsgo 0usiSls




SAMPLE PROBLEM 2/5

v, =00 —16(5) = -30 m/s

v, = —8(5) = -40 m/s

v =1/(-30)% + (—40)? = 50 m/s

a=1(-16)% + (-8)? = 17.89 m/s>

v = =30i — 40j m/s
—
a=-16i — 8 m/s*

&)

dfféwf)
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v=2500m/s
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Chapter 2 - Kinematics of Particles

a =17.80 m/s?

vy = —40 m/s




Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/6

A team of engineering students designs a medium-size cata-
pult which launches 8-lb steel spheres. The launch speed is
vo = 80 ft/sec, the launch angle is 6 = 35° above the horizon-
tal, and the launch position is 6 ft above ground level. The
students use an athletic field with an adjoining slope topped
by an 8-ft fence as shown. Determine:

(a) the time duration ¢ of the flight
(b) the x-y coordinates of the point of first impact

(¢) the maximum height i above the horizontal field attained
by the ball

(d) the velocity (expressed as a vector) with which the projectile strikes
the ground (or the fence)

Repeat part (b) for a launch speed of v, = 75 ft/sec.

| Uﬁ =80 fFj‘rSEE fE‘ﬂEE

[ . 8{
|
I} |A5° 20

< 100’ =<— 30—
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Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/6

[ = x5 + (v )t ] 100 + 30 = 0 + (80 cos 35°)¢ t = 1.984 sec
[y =¥+ (vy)ot — %gtz] y =6 + 80 sin 35°(1.984) — %{322}(1.984}2 =33.7Tft

[y = yo+ (vy)of — %gtz] 20 = 6 + 80 sin 35°(¢f) — %(BZ,ZthE tp = 2.50 sec Ans.
[x =x9 + (v)ot] 2= 0+ 80 cos 35°(2.50) = 164.0 ft

(b) Thus the point of first impact is (x, y) = (164.0, 20) ft. Ans.

&)
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Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/6

(c) For the maximum height:

[v,2 = (vy)0” —28(y —yo)] 0°=(80sin 35°)*—2(32.2)(h—6) h=38.7ft Ans

(d) For the impact velocity:
[v, = (U)o ] v, = 80 cos 35° = 65.5 ft/sec
(v, = (vy)g — 8t ] v, = 80 sin 35° — 32.2(2.50) = —34.7 ft/sec

So the impact velocity 1s v = 65.51 — 34.7j ft/sec. Ans.

&)
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Chapter 2 - Kinematics of Particles

2/5 | Normal and Tangential Coordinates (n-t)

o Measurements made along the tangent t and normal n to the path of the particle

C ,t
H____.-f ll"'__ -
« '. \
A \ in 1
-"-._l". ;"._ - i
thx B t

&)

dc/’w” Sl (w0 = Sl (cwadgeo 0aSCidls @




Chapter 2 - Kinematics of Particles

2/5 | Normal and Tangential Coordinates (n-t)

Velocity and Acceleration

[V — Ue = Pﬁﬂr]

=
=
/

@ o
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Chapter 2 - Kinematics of Particles

2/5 | Normal and Tangential Coordinates (n-t)

Velocity and Acceleration

_dv  dve) . L
a= - a = ve; + ve;
de, = e, dp

. .
€ = B'E‘n}
.

&)

R




Chapter 2 - Kinematics of Particles

2/5 | Normal and Tangential Coordinates (n-t)

Velocity and Acceleration

N
v? _
a=—e, +Uve

P
L. _
2
U .
an:_:pﬁzzuﬁ
P
a, =0 =5 = a,=0=dpp)dt=pB+ pB
a = Ja,?+ a?
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Chapter 2 - Kinematics of Particles

2/5 | Normal and Tangential Coordinates (n-t)

Geometric Interpretation

< a,, Is always directed toward the center of curvature C

&)

dfféwf)

L

Speed
increasing

(a)
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Chapter 2 - Kinematics of Particles

2/5 | Normal and Tangential Coordinates (n-t)

Circular Motion

< Circular motion is an important special case of plane curvilinear motion where the
radius of curvature p becomes the constant radius r of the circle.

&)
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Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/7

To anticipate the dip and hump in the road, the driver of a car applies her
brakes to produce a uniform deceleration. Her speed is 100 km/h at the
bottom A of the dip and 50 km/h at the top C of the hump, which is 120 m
along the road from A. If the passengers experience a total acceleration of
3 m/s” at A and if the radius of curvature of the hump at C is 150 m, calcu-
late (a) the radius of curvature p at A, (b) the acceleration at the inflection

point B, and (¢) the total acceleration at C. 60 m C
—_ 60 m
km\/ 1h m B 150 m
Vg = (1{]0 h ) (3600 E) (1000 E) =27.8m/s A l
1000
ve = 50 3600 = 13.89 m/s
[fudu:fatd.s] f .udu=a3_’”ds
U, 0
1 9 .. (13.89)* — (27.8)* "
ﬂg—gsfl’c —U4°) = 2(120) =—-2.41m/s

&)
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Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/7

gom C
60 m

B 150 m

la® = a,” + a,”] a,?=3%-(2.41)2=3.19 a, = 1.785 m/s?

n

la, = v?/p] o =v?/a, =(27.8)2/1.785 = 432 m

+n
I

I
a = 3 m/s? [

a, = 1.785 m/s*

eat= Seolnd (o — Silso  owdigo 0uSCiild




Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/7

gom C
— 60 m
B
A 15)[[11:1
a, =0 and

eat= Seolnd (o — Silso  owdigo 0uSCiild




Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/7

eom C
—_— 60 m
A B 15]1 m
la, = v?/p] a, = (13.89)%2/150 = 1.286 m/s®

a = 1.286e, — 2.41e, m/s>
la = va,? + a,’] a = 1/(1.286)% + (-2.41)% = 2.73 m/s?

a;=-2.41m/s* C "

o
.—'-"'H-'_ —

a, = 1.286 m/s?

a,=2.73m/s

W A

eat= Seolnd (o — Silso  owdigo 0uSCiild




Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/8

A certain rocket maintains a horizontal attitude of its axis during the
powered phase of its flight at high altitude. The thrust imparts a hor-
izontal component of acceleration of 20 ft/sec?, and the downward ac-
celeration component is the acceleration due to gravity at that altitude,
which is g = 30 ft/sec®. At the instant represented, the velocity of the
mass center G of the rocket along the 15° direction of its trajectory is
12,000 mi/hr. For this position determine (a) the radius of curvature
of the flight trajectory, (b) the rate at which the speed v is increasing,
(c) the angular rate f of the radial line from G to the center of curva-
ture C, and (d) the vector expression for the total acceleration a of the
rocket.

G 2
e i 20 ft/sec
Horiz. = %: 12,000 mi/hr

I
!

|
I ""‘—ut

n
/ lg = 30 ft/sec?
P

Y /
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Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/8

a, = 30 cos 15° — 20 sin 15° = 23.8 ft/sec?

G _2)thfsec2
a, = 30 sin 15° + 20 cos 15° = 27.1 ft/sec® Horiz. /i ~1820=12,000 mi/hr
nf’ : “‘""“ T
2
2 [(12,000)(44/30)] / | = 30 usec?
_ .2 _v _ [( _ 6
[a, = v/p] p o 238 13.01(10%) ft )/o
[0 =a,] v = 27.1 ft/sec” C
[ ,B] F: / 12,000(44/30) 13.53(104) rad/
v = = = = 13. ;
: P T 13010109 radimee
« = 20 ft/sec?
—p a=238e, + 27.1e, ft/sec? I
15 a; = L’
: e €
2 |
ﬂn = — | i
P |/
|/
|

]

/ E_ﬁ"‘“—a,__h /
e, L ___T=
g =30 ft/sec?

eat= Seolnd (o — Silso  owdigo 0uSCiild




Chapter 2 - Kinematics of Particles

2/6 | Polar Coordinates (r-9)

< Particle is located by the radial distance r from a fixed point and by an angular
measurement 6 to the radial line

Path

&)
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Chapter 2 - Kinematics of Particles

2/6 | Polar Coordinates (r-9)

Time Derivatives of the Unit Vectors

de, dey
7 ey and I —e,
- . A
e, = fe, and e, = —fe,
. /
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Chapter 2 - Kinematics of Particles

2/6 | Polar Coordinates (r-9)

Velocity
V=1r=re, +re,
v, =T
[V =re, + rﬁeﬁj v, = rf
T2 )

v = NUS 1 Uy

Acceleration

a=v=(Fe, + re) + (rfe, + rée, + roé,)

- . . . h
a=G- ro®e, + (r + 2/)e, | 4 — 5 _ 2
_,.r"l r
. . 1d -
a, = rb + 26 ay = ——(r%)
o . 2

@ - \jarz + aH
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Chapter 2 - Kinematics of Particles

2/6 | Polar Coordinates (r-9)

Geometric Interpretation
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2/6 | Polar Coordinates (r-9)

Geometric Interpretation

P




Chapter 2 - Kinematics of Particles

2/6 | Polar Coordinates (r-9)

Circular Motion

< Same as that obtained with n- and t-components, where the n- and t-directions
coincide but the positive r-direction is in the negative n-direction.

re \ -

=
N
I
-
=
=
I

&)

JLst=" Saoligd (030 — Sl (mwiigen Sl




Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/9

Rotation of the radially slotted arm is governed by 6 = 0.2t + 0.02¢°,
where € is in radians and f is in seconds. Simultaneously, the power
screw in the arm engages the slider B and controls its distance from O
according to r = 0.2 + 0.04#*, where r is in meters and ¢ is in seconds.

Calculate the magnitudes of the velocity and acceleration of the slider
for the instant when £ = 3 s.

r=0.2+ 0.04£2 rs = 0.2 + 0.04(3%) = 0.56 m

7 = 0.08t 5 = 0.08(3) = 0.24 m/s

# = 0.08 73 = 0.08 m/s?

[vg =16] v, = 0.24 m/s

[V, =16] v, = 0.56(0.74) = 0.414 m/s

(v = v, + v,%] v = (0.24)2 + (0.414)%2 = 0.479 m/s

&)
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Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/9

v=0479 m/s
/ | HE&
9 =02t + 002 65 =02(3) + 0.02(3%) = 1.14 rad L\ b, =024 m/s
or f; = 1.14(180/7) = 65.3° Ve =04ldm/s ™p

f=02+006t2 6 =02+ 0.06(3%) = 0.74 rad/s

6=0.12¢ f; = 0.12(3) = 0.36 rad/s? r=056m

&)
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Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/9

[a, = 7# — r6?] a, = 0.08 — 0.56(0.74)? = —0.227 m/s?
[a, =10 + 270] a, = 0.56(0.36) + 2(0.24)(0.74) = 0.557 m/s?
[a = Ja,? + a,’] a =(—0.227)% + (0.557)% = 0.601 m/s’

ag = 0.557 m/s?

/
e

*B

-~ |
a = 0.601 m/s2 / ~~ _J/a,=-0.227 m/s?

eat= Seolnd (o — Silso  owdigo 0uSCiild




SAMPLE PROBLEM 2/9

< Conversion from polar to rectangular coordinates

Chapter 2 - Kinematics of Particles

x =rcosf y=rsin#f
1
e | (=35
05 / /
'y
/ rgl= 0.56 m
Y. m 6.|= 65.3°
U. i
/
t=0
05 t=5Hs
~1.5 -1 0.5 0 0.5
X, m

dfféwf)
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Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/10

A tracking radar lies in the vertical plane of the path of a rocket which
is coasting in unpowered flight above the atmosphere. For the instant
when 8 = 30°, the tracking data give r = 25(10%) ft, = 4000 ft/sec, and
6 = 0.80 deg/sec. The acceleration of the rocket is due only to gravita-
tional attraction and for its particular altitude is 31.4 ft/sec” vertically
down. For these conditions determine the velocity v of the rocket and
the values of ¥ and 6.

dww” Saolnd (o — SEo (pwaigo suSiSld




Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/10

U, =T v, = 4000 ft/sec

[ ]

[0y = 10] vy = 25{1{}4}{{].80}(%) — 3490 ft/sec
(v = V0,2 + v,7] v = J(4000)% + (3490)2 = 5310 ft/sec

v, = 4000 ft /sec

b = 5310 ft/sec

/ Vg = 3490 ft /sec
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SAMPLE PROBLEM 2/10

a, = —31.4 cos 30° = —27.2 ft/sec® r=

Chapter 2 - Kinematics of Particles

ag = 15.70 ft /sec®

ay = 31.4 sin 30° = 15.70 ft/sec? 6= 30°/ >~ ‘kf
- ~ 2
| T a=g=2314ft/sec
| /'

[a, = F — rf?]

2
_ _x 1 T
27.2 =r — 25(10 )(0.80 180)

F = 21.5 ft/sec?

[a, =16 + 278 ] 15.70 = 25(10Y8 + 2(400{])(0.80 %)
6 = —3.84(10 %) rad/sec?
= Saoliyd (30 — Sl (owdieo ouSld @




Chapter 2 - Kinematics of Particles

2/7 | Space Curvilinear Motion

Rectangular Coordinates (x-y-z)

s ~
R=xi+y +:zk

v=R=xi+yj+zk

a=v=R=5xi+7 + 7k
. A

&)
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Chapter 2 - Kinematics of Particles

2/7 | Space Curvilinear Motion

Cylindrical Coordinates (r-68-2) R = re, + zk
. _ ™
L\*r.r = re, + roe, +ékJ
v, =1
vy = 16
v, = 2

|
v = \,.furz + UH2 + Uzz

[a = (¥ — ré%e, + (ré + 2r6)e, + ék}

a, =r — ro?

— i + 270 = -2 %)
ay = I r _rdtr

a. = z

I
a = qa,z + a,,z + azz
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Chapter 2 - Kinematics of Particles

2/7 | Space Curvilinear Motion

Spherical Coordinates (R-0-¢)

' )
V = Ugpep + Uyey T V€, |
\ J
Up = R
vy = RO cos ¢
Ugp = Ré

-
| a = agep + ey + aze,
. vy

ap = R — R$? — R6? cos® &

_cosd;i . c
% ="p dt(Rﬁ} 2R6¢ sin ¢
1 d . o
ay, = —— (R%p) + R6? sin ¢ cos ¢

@ o
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Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/11

The power screw starts from rest and is given a rotational speed 6
which increases uniformly with time ¢ according to 8 = kt, where k is
a constant. Determine the expressions for the velocity v and accelera-
tion a of the center of ball A when the screw has turned through one
complete revolution from rest. The lead of the serew (advancement per
revolution) is L.

9=&9=jédt=%kt2 2m = Lht? t = 2Jmlk

0=kt =k2J/mlk) =20k

The helix angle y of the path followed by the center of the ball governs the
relation between the #- and z-components of velocity and is given by tan y =
L/(27b). Now from the figure we see that v, = v cos y. Substituting v, = rf = b
from Eq. 2/16 gives v = vy/cos y = bf/cos y. With cos y obtained from tan y and
with § = 2\,f7r_k, we have for the one-revolution position
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Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/11

tan y = L/(2#b).

vy=vcosy U,=rf=bf v = vy/cos y = bl/cos y

that for tan _,B = al/b t_he cosine of B — JL? + 472p2 '
. . _ - _ |k 73 2,2
becomes b/\a® + b2 v = 2b\wk 2mh - TT"“L + 47°b
la, = ¥ — ré?] a, = 0 — b(2J7k)? = —4bzk
la, = rf + 2761 a, = bk + 2(0)(27k) = bk
la. =2 =0.] =20 = Lot )—i(bét )
a, =z = U, az—drivg —dtluﬁ an vy a7 an y
. L kL
= {btan?)ﬁ—bﬁk —E
2
a= \/{—4ka12 + (bk)* + (E)
27

= bkJ(1 + 1672) + LY (A7%b?)

= Seolind (w8 = SlSo (pwaiigeo ouSiils 6




Chapter 2 - Kinematics of Particles

28 | Relative Motion (Translating Axes)

It is not always possible or convenient, however, to use a fi xed set of axes to
describe or to measure motion.

In addition, there are many engineering problems for which the analysis of
motion is simplified by using measurements made with respect to a moving
reference system.

These measurements, when combined with the absolute motion of the
moving coordinate system, enable us to determine the absolute motion in
question.

This approach is called a relative-motion analysis.

&)
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Chapter 2 - Kinematics of Particles

28 | Relative Motion (Translating Axes)

Choice of Coordinate System

< The motion of the moving coordinate system is specified with respect to a fixed
coordinate system.

Vector Representation

'y = T¥pg + T'A/B
~

Il“‘A = ].:‘B + ]E'A;"E or Vq = Vg + VuB ‘
vy

I.If.‘A = E'B + .I.'AIB or

&)
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Chapter 2 - Kinematics of Particles

SAMPLE PROBLEM 2/14
Car A is accelerating in the direction of its motion at the rate of 3 ft/sec”. |

Car B is rounding a curve of 440-ft radius at a constant speed of 30 mi/hr.

Determine the velocity and acceleration which car B appears to have
to an observer in car A if car A has reached a speed of 45 mi/hr for the
positions represented.

Vp = Vyu + Vi

5280 44 44

vy = 45 60r 45 30 " 66 ft/sec vp = 30 30~ 44 ft/sec
UBI,I'A = 582 ﬂ].l"rSEC ﬂ = 4090 UA = /6 ft/sec

NG

N
ap = ay + agy S
N
la, = szp] ag = (44)%/440 = 4.4 ft/sec® UBIA\\
N

(agyn), = 4.4 cos 30° — 3 = 0.810 ft/sec? N

(apm)y = 4.4 sin 30° = 2.2 ft/sec?

ap = 4.4 ft/sec?

apy = v(0.810)% + (2.2)2 = 2.34 ft/sec?

Apia
¢ \
%'4 = .2'34 5 B =sin"! (g {}.5) = 110.2° '\'S
sin B8 sin 30 2.34 a,=3 ft/accd
‘JM[; ""/b Sl o WS — S50 (WO U] K

vg = 44 ft/sec




Chapter 2 - Kinematics of Particles

2/ | Constrained Motion of Connected Particles

0 Sometimes the motions of particles are interrelated because of the constraints
Imposed by interconnecting members.

One Degree of Freedom

< One degree of freedom: only one variable, either x or y, is needed to specify the
positions of all parts of the system.

no| b
7T A __T> i
L=x+72+2_~,-'+1.—r1+b ’ni‘———

0=x+ 2y or 0 =vy + 2vup

0=x+ 2y or 0=ay + 2ap

&)
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Chapter 2 - Kinematics of Particles

2/ | Constrained Motion of Connected Particles

Two Degrees of Freedom

Ly =v4 + 2yp + constant S ‘N)‘\ ffq\ﬁ -
Lg = yp +yc + (y¢ — yp) + constant B _}"f;

JL A YD
0=ya+2p and  0=3p+2c—p g

Ozj}A'l‘Zj}D H]ld Ozj}g+2jic—j}ﬂ

va+ 2vp+ 4y =0 or va + 2vp + dvc =0

j;A+2j';B+4j}C:O or GA+2{IB+4GC:0

&)

dww” Saolnd (o — SEo (pwaigo suSiSld

- &)




SAMPLE PROBLEM 2/16

Chapter 2 - Kinematics of Particles

The tractor A is used to hoist the bale B with the pulley arrangement
shown. If A has a forward velocity v,4, determine an expression for the

upward velocity vy of the bale in terms of x.

L=2h-y)+1=2h—y) + JhZ+2°

Vh% + x*
1 xvy
Up -
2 /h? + 2?
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