

ر. دانىگدە مەندىي مكانيك

Semnan University Faculty of Mechanical Engineering

درس مبانی برق ۱

نيمسال اول ۹۸–۹۹

ELECTRICAL ENGINEERING

PRINCIPLES AND APPLICATIONS

Allan R. Hambley 5th Edition

CONTENTS:

Chapter 1: Introduction

Chapter 2: Resistive Circuits

Chapter 3: Inductance and Capacitance

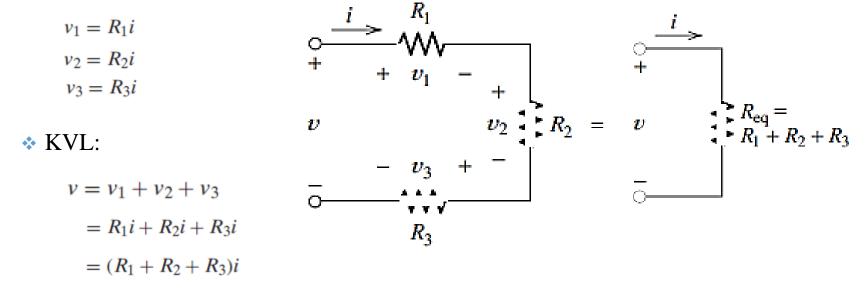
Chapter 4: Transients

Chapter 5: Steady-State Sinusoidal Analysis

INTRODUCTION

- Network analysis
- □ Voltage-division and current-division principles
- Node-voltage technique
- Mesh-current technique
- Thévenin and Norton equivalents
- □ Use MATLAB[®] to solve circuit equations
- Superposition principle

Series Resistances



Equivalent Resistance:

$$v = R_{\rm eq}i \qquad \qquad R_{\rm eq} = R_1 + R_2 + R_3$$

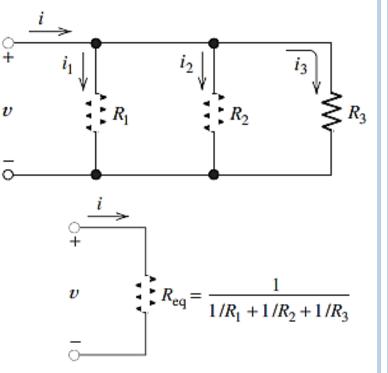
Parallel Resistances

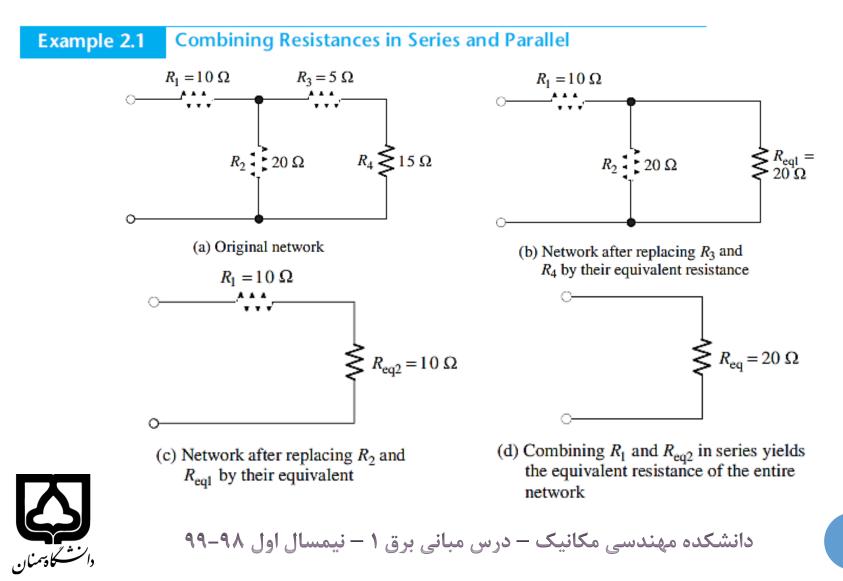
$$i_1 = \frac{v}{R_1}$$
$$i_2 = \frac{v}{R_2}$$
$$i_3 = \frac{v}{R_3}$$

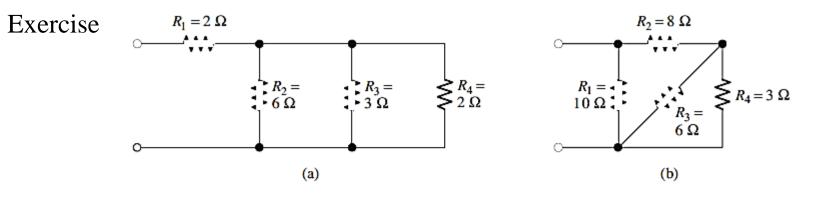
* KCL: $i = i_1 + i_2 + i_3 = \frac{v}{R_1} + \frac{v}{R_2} + \frac{v}{R_3}$ $= \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right)v$

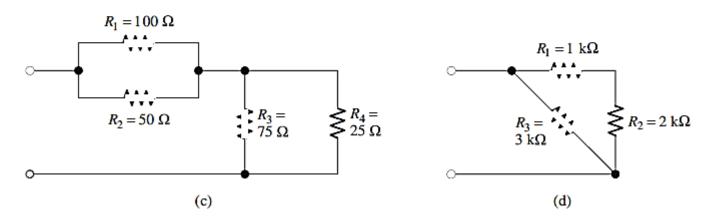
Equivalent Resistance

$$i = \frac{1}{R_{eq}}v$$
 $R_{eq} = \frac{1}{1/R_1 + 1/R_2 + 1/R_3}$ $R_{eq} = \frac{R_1R_2}{R_1 + R_2}$









a. 3 Ω; **b.** 5 Ω; **c.** 52.1 Ω; **d.** 1.5 kΩ.

Conductances in Series and Parallel

Series

$$G_{\text{eq}} = \frac{1}{1/G_1 + 1/G_2 + \dots + 1/G_n}$$

Parallel

$$G_{\rm eq} = G_1 + G_2 + \dots + G_n$$

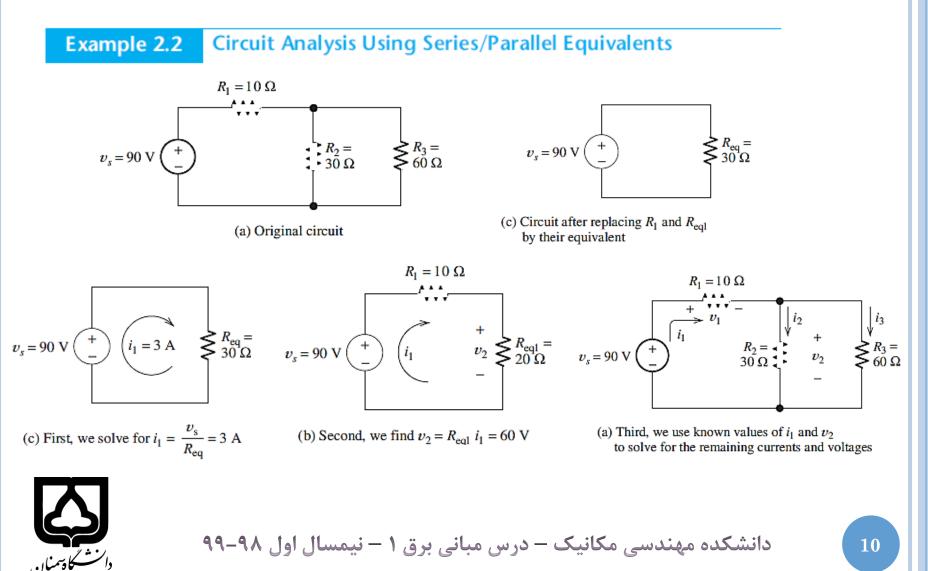
Series versus Parallel Circuits

- Parallel: Distribute power from single voltage source
- Series

2.2 NETWORK ANALYSIS BY USING SERIES AND PARALLEL EQUIVALENTS

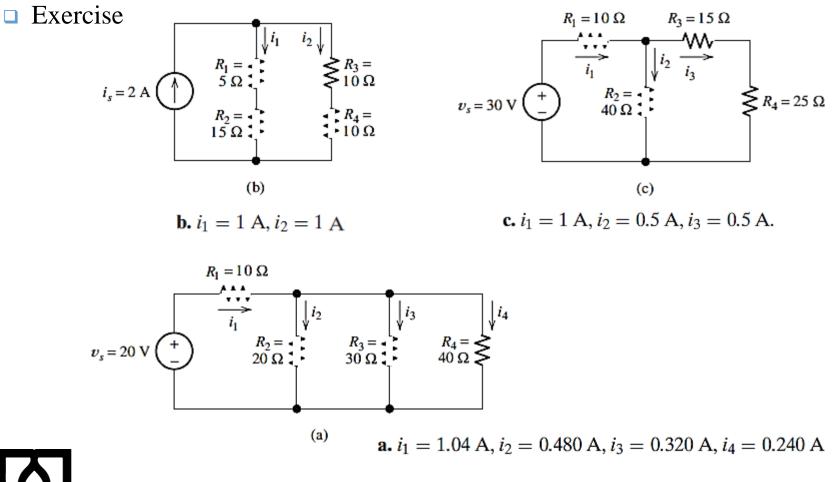
- Circuit Analysis Using Series/Parallel Equivalents
 - * 1. Locating a combination of series or parallel resistances
 - * 2. Redraw the circuit with the equivalent resistances
 - **3.** Repeat steps 1 and 2
 - ✤ 4. Solve final equivalent circuit, transfer results back
 - * 5. Check your results for KCL and KVL

2.2 NETWORK ANALYSIS BY USING SERIES AND PARALLEL EQUIVALENTS



Chapter 2 - Resistive Circuits

2.2 NETWORK ANALYSIS BY USING SERIES AND PARALLEL EQUIVALENTS



دانت کادسمنان

2.3 VOLTAGE-DIVIDER AND CURRENT-DIVIDER CIRCUITS

Voltage Division

$$i = \frac{v_{\text{total}}}{R_{\text{eq}}} = \frac{v_{\text{total}}}{R_1 + R_2 + R_3}$$

$$v_1 = R_1 i = \frac{R_1}{R_1 + R_2 + R_3} v_{\text{total}}$$

$$v_2 = R_2 i = \frac{R_2}{R_1 + R_2 + R_3} v_{\text{total}}$$

$$v_3 = R_3 i = \frac{R_3}{R_1 + R_2 + R_3} v_{\text{total}}$$

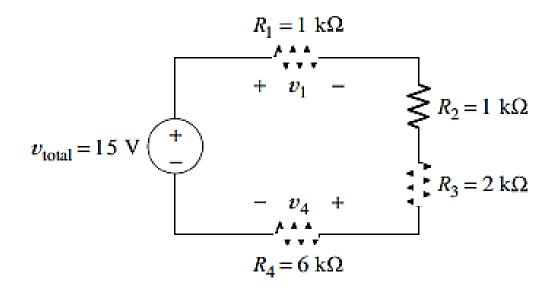
$$v_{\text{total}} = \frac{V_{\text{total}}}{R_3}$$

Voltage-division principle:

The Voltage fraction that appears across a given resistance in a series circuit is the ratio of the given resistance to the total series resistance.

2.3 VOLTAGE-DIVIDER AND CURRENT-DIVIDER CIRCUITS

Example 2.3 Application of the Voltage-Division Principle



 $V_1 = 1.5 V$ $V_2 = 1.5 V$ $V_1 = 3 V$ $V_1 = 9 V$

Chapter 2 - Resistive Circuits

2.3 VOLTAGE-DIVIDER AND CURRENT-DIVIDER CIRCUITS

Current Division

$$v = R_{eq}i_{total} = \frac{R_1R_2}{R_1 + R_2}i_{total}$$
$$i_1 = \frac{v}{R_1} = \frac{R_2}{R_1 + R_2}i_{total}$$
$$i_2 = \frac{v}{R_2} = \frac{R_1}{R_1 + R_2}i_{total}$$
$$i_{total} = \frac{v}{R_1} = \frac{R_2}{R_1 + R_2}i_{total}$$

Current-division principle:

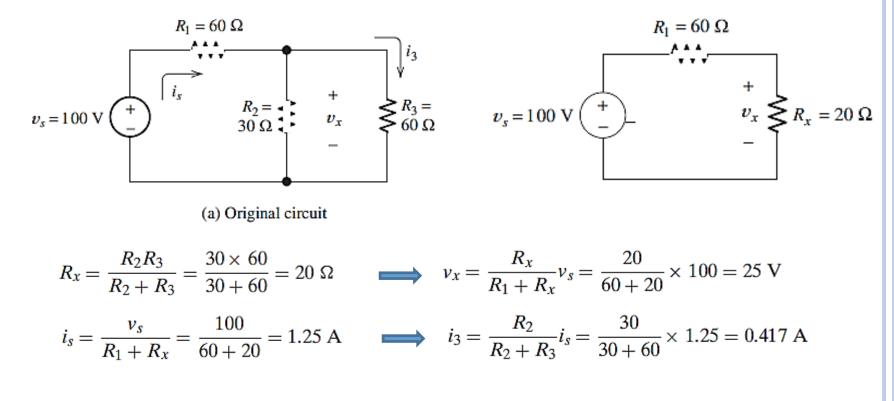
The fraction of the total current owing in a resistance is the ratio of the other resistance to the sum of the two resistances.

Using Conductances:

$$i_1 = \frac{G_1}{G_1 + G_2 + \dots + G_n} i_{\text{total}}$$
 $i_2 = \frac{G_2}{G_1 + G_2 + \dots + G_n} i_{\text{total}}$

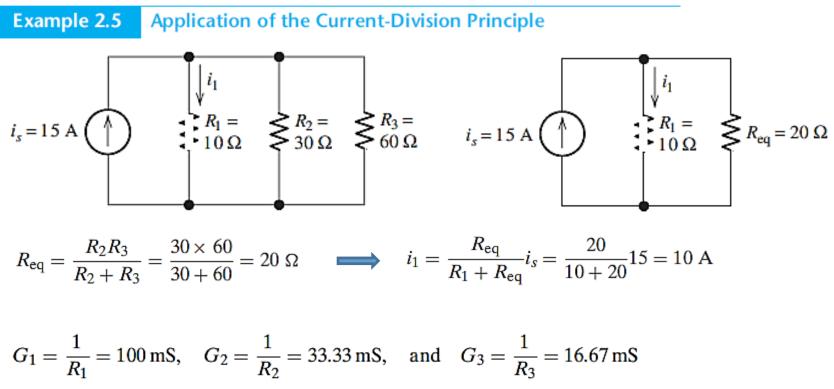
Chapter 2 - Resistive Circuits

2.3 VOLTAGE-DIVIDER AND CURRENT-DIVIDER CIRCUITS



دانشکده مهندسی مکانیک – درس مبانی برق ۱ – نیمسال اول ۹۸–۹۹

2.3 VOLTAGE-DIVIDER AND CURRENT-DIVIDER CIRCUITS



$$\implies i_1 = \frac{G_1}{G_1 + G_2 + G_3} i_s = \frac{100}{100 + 33.33 + 16.67} 15 = 10 \text{ A}$$

2.3 VOLTAGE-DIVIDER AND CURRENT-DIVIDER CIRCUITS

□ Position Transducers Based on the Voltage-Division Principle

$$v_o = v_s \frac{R_2}{R_1 + R_2} = K\theta$$

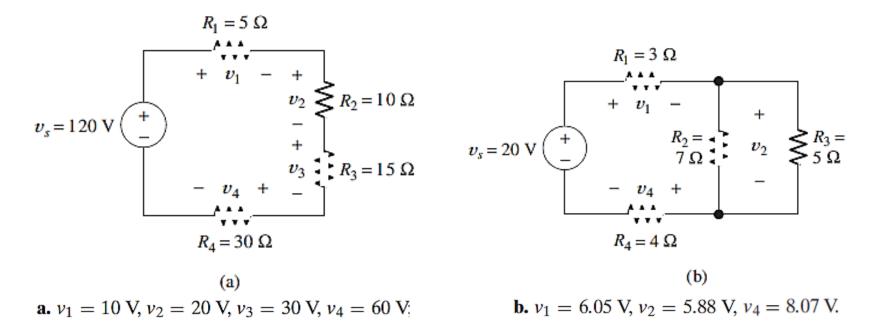
$$v_s \begin{pmatrix} + \\ + \\ - \\ - \\ v_o \end{pmatrix}$$

$$v_s \begin{pmatrix} + \\ + \\ - \\ - \\ v_o \end{pmatrix}$$
Rudder shaft
Rudder shaft
Rudder

Chapter 2 - Resistive Circuits

2.3 VOLTAGE-DIVIDER AND CURRENT-DIVIDER CIRCUITS

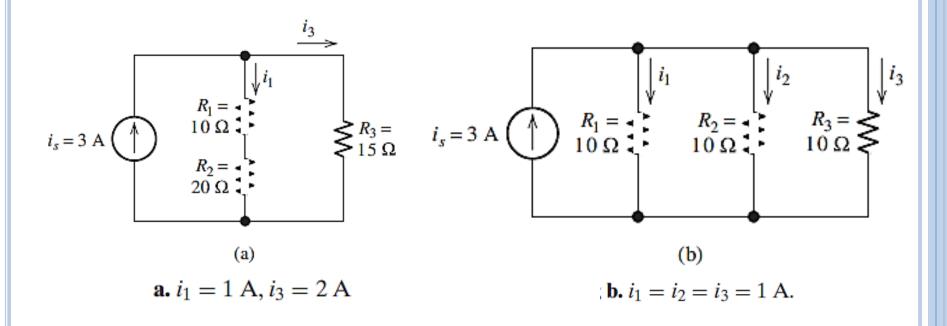
Exercise



Chapter 2 - Resistive Circuits

2.3 VOLTAGE-DIVIDER AND CURRENT-DIVIDER CIRCUITS

Exercise



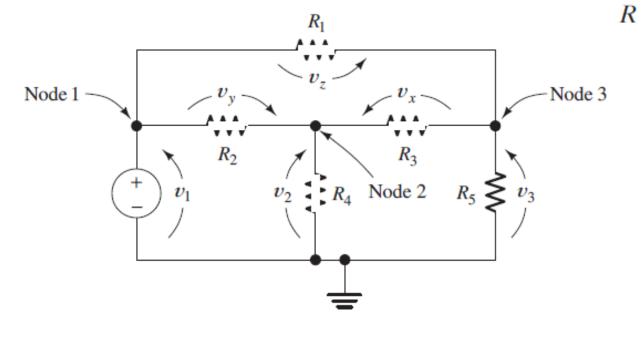
دانشکده مهندسی مکانیک – درس مبانی برق ۱ – نیمسال اول ۹۸–۹۹

19

 $v_n - v_k$

2.4 NODE-VOLTAGE ANALYSIS

- □ Selecting the Reference Node
- Assigning Node Voltages
- □ Finding Element Voltages in Terms of the Node Voltages $v_x = v_2 v_3$
- Writing KCL Equations in Terms of the Node Voltages

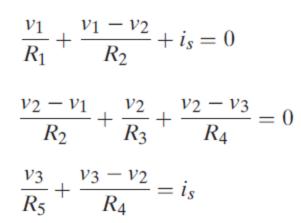


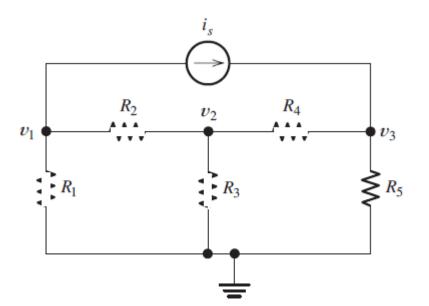
Chapter 2 - Resistive Circuits

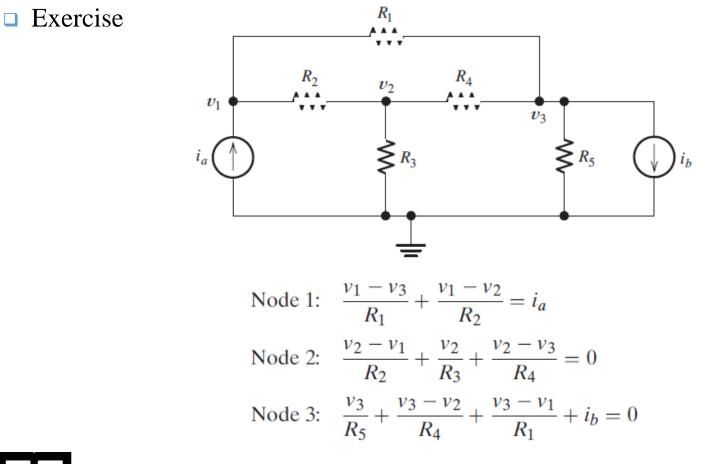
2.4 NODE-VOLTAGE ANALYSIS

Example 2.6 Node-Voltage Analysis

KCL for nodes 1,2 and 3:







Circuit Equations in Standard Form

* For two node voltages:

 $g_{11}v_1 + g_{12}v_2 = i_1$ $g_{21}v_1 + g_{22}v_2 = i_2$

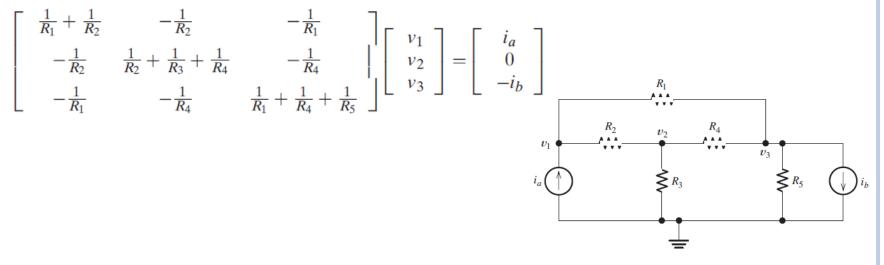
* For three node voltages:

 $g_{11}v_1 + g_{12}v_2 + g_{13}v_3 = i_1$ $g_{21}v_1 + g_{22}v_2 + g_{23}v_3 = i_2$ $g_{31}v_1 + g_{32}v_2 + g_{33}v_3 = i_3$

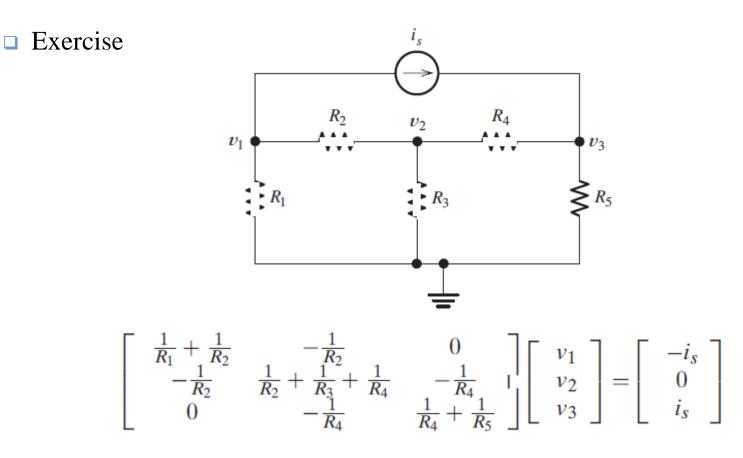
Matrix form:

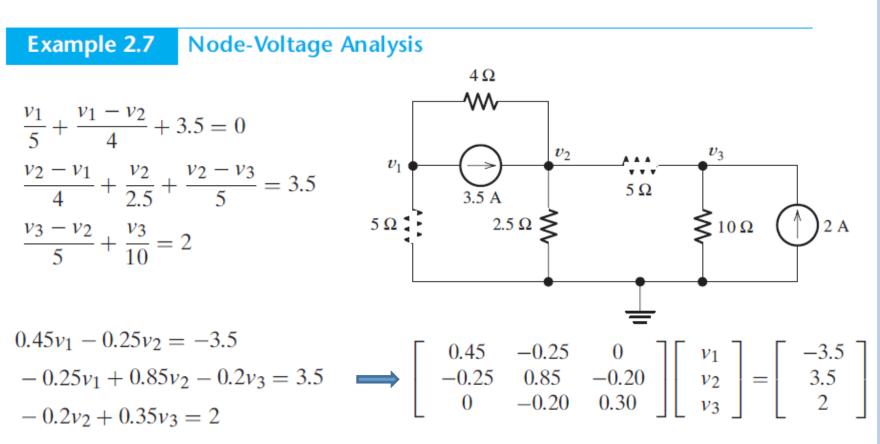
 $\mathbf{G}\mathbf{V} = \mathbf{I} \qquad \mathbf{V} = \mathbf{G}^{-1}\mathbf{I}$

□ A Shortcut to Writing the Matrix Equations



- Diagonal elements: sum of the conductances connected to node
- * Off-diagonal terms: negative of the conductance connected between node j and k
- * Terms in **I** matrix: currents pushed into corresponding nodes by current sources



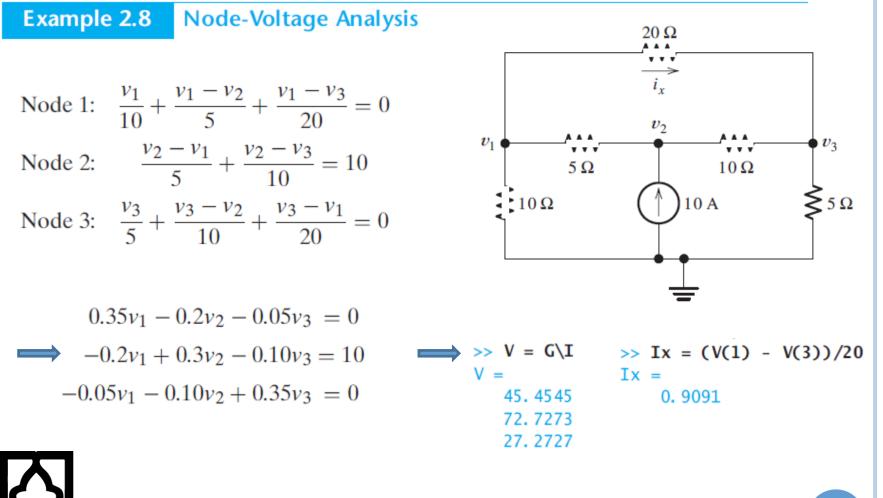


دانشکده مهندسی مکانیک – درس مبانی برق ۱ – نیمسال اول ۹۸–۹۹

26

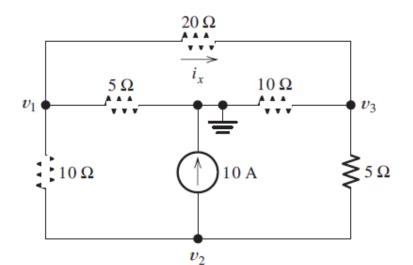
□ Using MATLAB to Solve Network Equations

```
\begin{bmatrix} 0.45 & -0.25 & 0 \\ -0.25 & 0.85 & -0.20 \\ 0 & -0.20 & 0.30 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} -3.5 \\ 3.5 \\ 2 \end{bmatrix}
>> I = [-3.5; 3.5; 2]
I =
    -3.5000
     3.5000
     2.0000
>> G = [0.45 - 0.25 0; -0.25 0.85 - 0.2; 0 - 0.2 0.30]
G =
      0. 4500 -0. 2500
                                           0
    -0. 2500 0. 8500 -0. 2000
                 -0.2000 0.3000
             0
>> V = G \setminus I
V =
    -5.0000
     5.0000
    10.0000
```

Exercise

$$\frac{v_1 - v_3}{20} + \frac{v_1}{5} + \frac{v_1 - v_2}{10} = 0$$
$$\frac{v_2 - v_1}{10} + 10 + \frac{v_2 - v_3}{5} = 0$$
$$\frac{v_3 - v_1}{20} + \frac{v_3}{10} + \frac{v_3 - v_2}{5} = 0$$

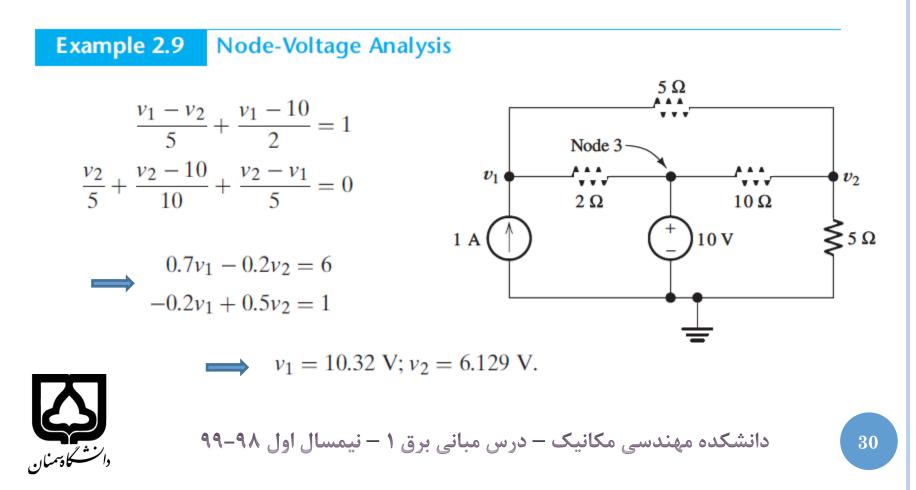


 $0.35v_1 - 0.10v_2 - 0.05v_3 = 0$ $\longrightarrow -0.10v_1 + 0.30v_2 - 0.20v_3 = -10$ $-0.05v_1 - 0.20v_2 + 0.35v_3 = 0$

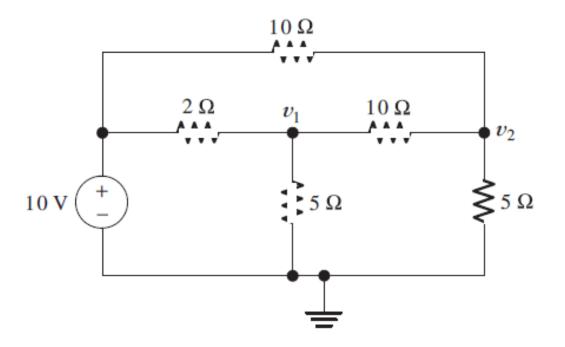
$$\rightarrow v_1 = -27.27; v_2 = -72.73; v_3 = -45.45$$
 $i_x = 0.909 \text{ A}$

Circuits with Voltage Sources

* Pick reference node at one end of source, one less unknown node voltage



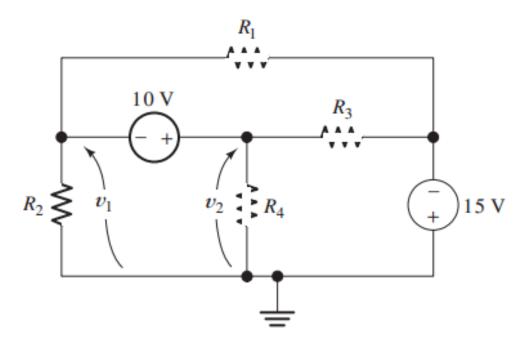
□ Exercise



 $v_1 = 6.77 \text{ V}, v_2 = 4.19 \text{ V}.$

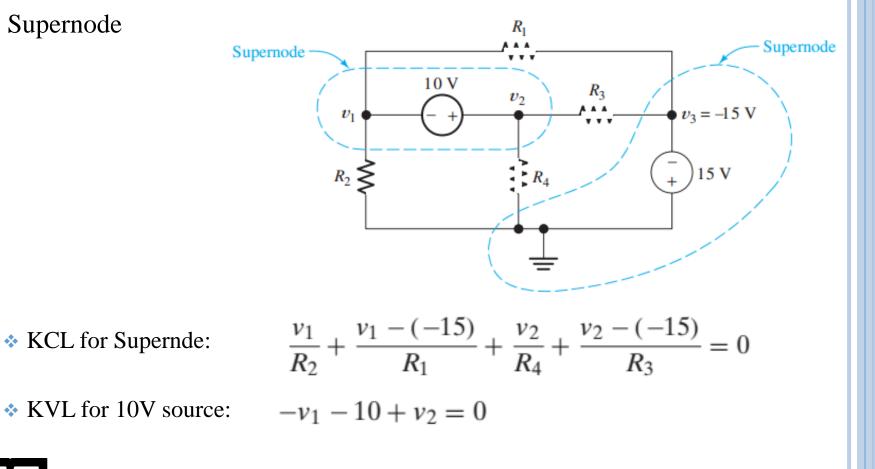
□ Supernode

- Decrease equations order (ignore source current)
- Forming closed surface (Supernode)
- Writing KCL for Supernode



NODE-VOLTAGE ANALYSIS 2.4

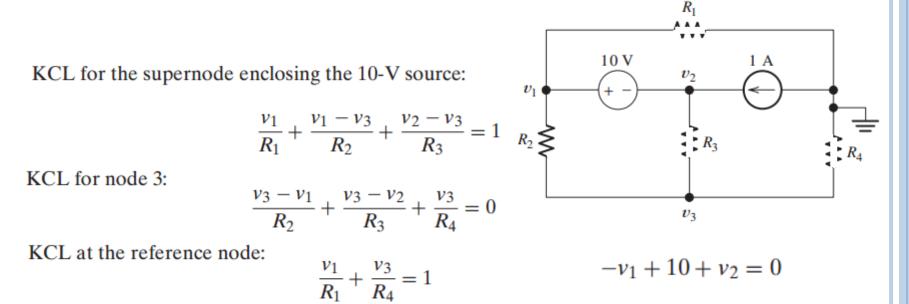
Supernode



Chapter 2 - Resistive Circuits

2.4 NODE-VOLTAGE ANALYSIS

□ Exercise:



Circuits with controlled sources

Example 2.10 Node-Voltage Analysis with a Dependent Source

 $2i_r$ $\frac{v_1 - v_2}{R_1} = i_s + 2i_x$ ***** KCLs: _______ $\frac{v_2 - v_1}{R_1} + \frac{v_2}{R_2} + \frac{v_2 - v_3}{R_3} = 0$ v_3 R_3 $\geq R_4$ $\frac{v_3 - v_2}{R_3} + \frac{v_3}{R_4} + 2i_x = 0$ Substituting: $\frac{v_1 - v_2}{R_1} = i_s + 2\frac{v_3 - v_2}{R_2}$ $i_x = \frac{v_3 - v_2}{R_2} \implies \frac{v_2 - v_1}{R_1} + \frac{v_2}{R_2} + \frac{v_2 - v_3}{R_2} = 0$ $\frac{v_3 - v_2}{R_3} + \frac{v_3}{R_4} + 2\frac{v_3 - v_2}{R_2} = 0$ دانشکده مهندسی مکانیک – درس مبانی برق ۱ – نیمسال اول ۹۸–۹۹ 35

 R_1

2.4 NODE-VOLTAGE ANALYSIS

Example 2.11 Node-Voltage Analysis with a Dependent Source

$$\frac{v_1}{R_2} + \frac{v_1 - v_3}{R_1} + \frac{v_2 - v_3}{R_3} = i_s$$

$$\frac{v_3}{R_4} + \frac{v_3 - v_2}{R_3} + \frac{v_3 - v_1}{R_1} = 0$$

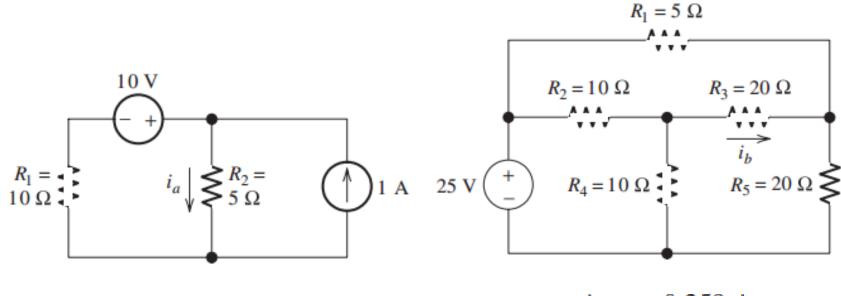
$$\frac{v_1}{R_2} + \frac{v_3}{R_4} = i_s$$

$$-v_1 + 0.5v_x + v_2 = 0$$

$$v_x = v_3 - v_1$$

2.4 NODE-VOLTAGE ANALYSIS

□ Exercise

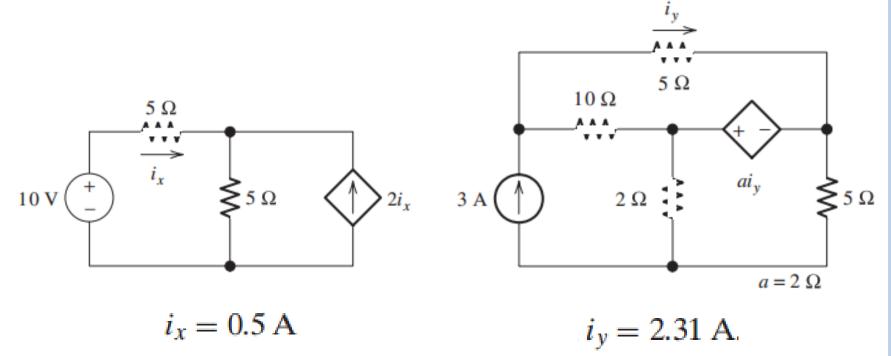


 $i_a = 1.33 \text{ A}$

 $i_b = -0.259 \,\mathrm{A}$

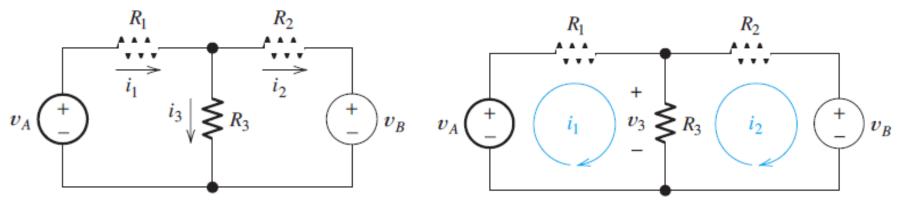
2.4 NODE-VOLTAGE ANALYSIS

□ Exercise

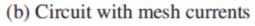


□ For solving currents

- Branch currents
- Mesh currents



(a) Circuit with branch currents



 R_2

2.5 **MESH-CURRENT ANALYSIS**

□ Normal KVL-KCL:

$$R_{1}i_{1} + R_{3}i_{3} = v_{A}$$

$$-R_{3}i_{3} + R_{2}i_{2} = -v_{B}$$

$$i_{1} = i_{2} + i_{3}$$

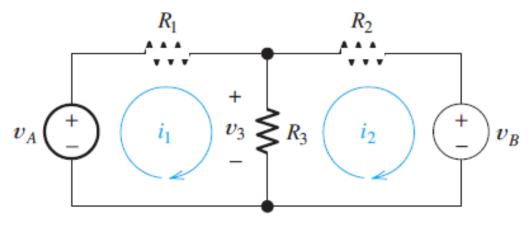
$$R_{1}i_{1} + R_{3}(i_{1} - i_{2}) = v_{A}$$

$$R_{1}i_{1} + R_{3}(i_{1} - i_{2}) = v_{A}$$

$$\implies \begin{array}{c} R_1 \iota_1 + R_3 (\iota_1 - \iota_2) = v_A \\ -R_3 (i_1 - i_2) + R_2 i_2 = -v_B \end{array}$$

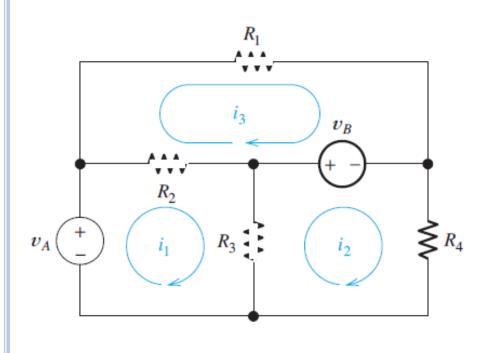
40

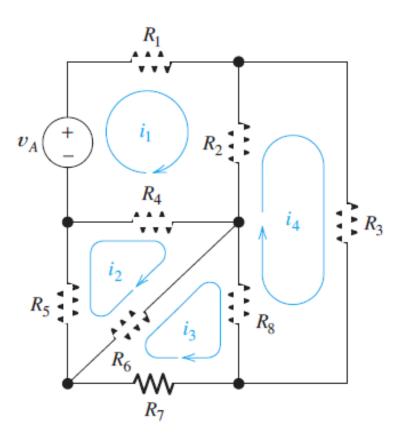
□ Mesh-Current Method:



 $R_1 i_1 + R_3 (i_1 - i_2) = v_A$ $-R_3 (i_1 - i_2) + R_2 i_2 = -v_B$

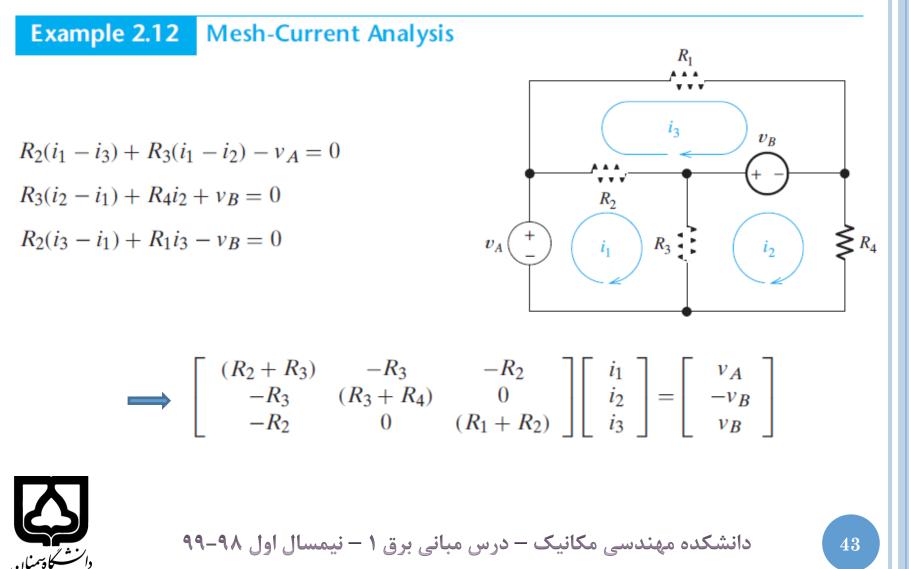
□ Example





Chapter 2 - Resistive Circuits

2.5 MESH-CURRENT ANALYSIS



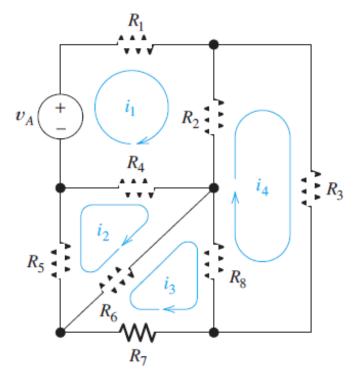
2.5 MESH-CURRENT ANALYSISExercise

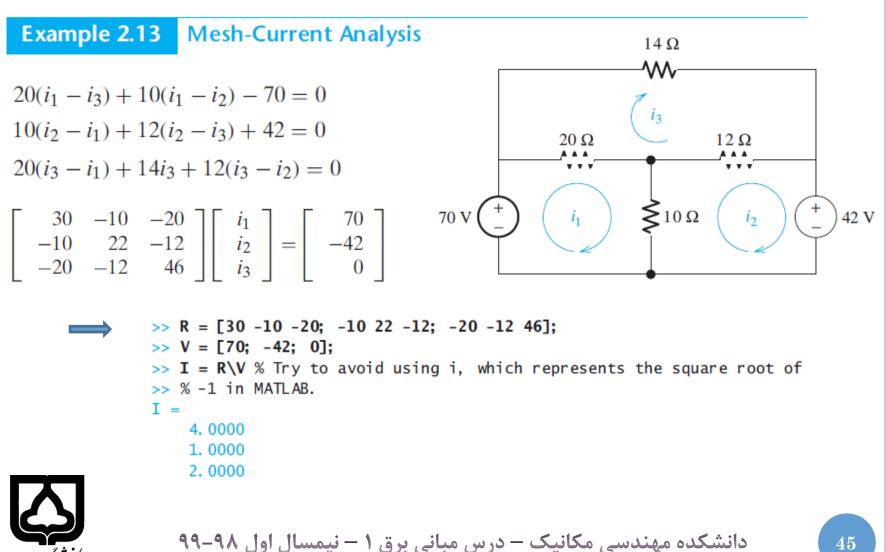
$$R_{1}i_{1} + R_{2}(i_{1} - i_{4}) + R_{4}(i_{1} - i_{2}) - v_{A} = 0$$

$$R_{5}i_{2} + R_{4}(i_{2} - i_{1}) + R_{6}(i_{2} - i_{3}) = 0$$

$$R_{7}i_{3} + R_{6}(i_{3} - i_{2}) + R_{8}(i_{3} - i_{4}) = 0$$

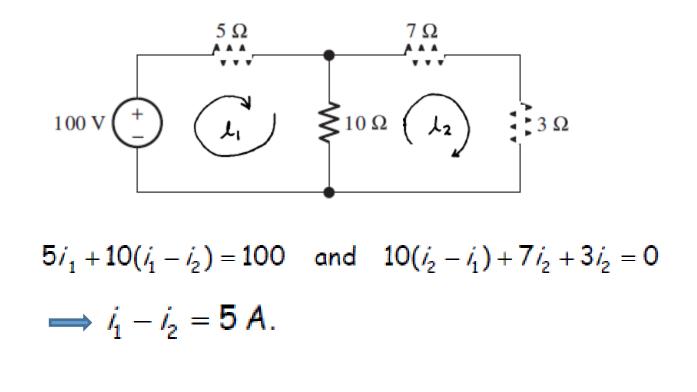
$$R_{3}i_{4} + R_{2}(i_{4} - i_{1}) + R_{8}(i_{4} - i_{3}) = 0$$



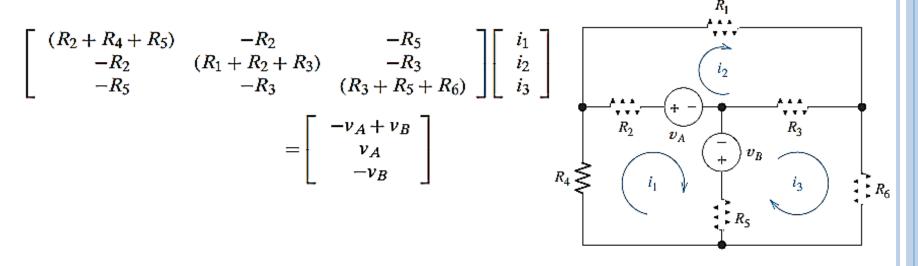


□ Exercise

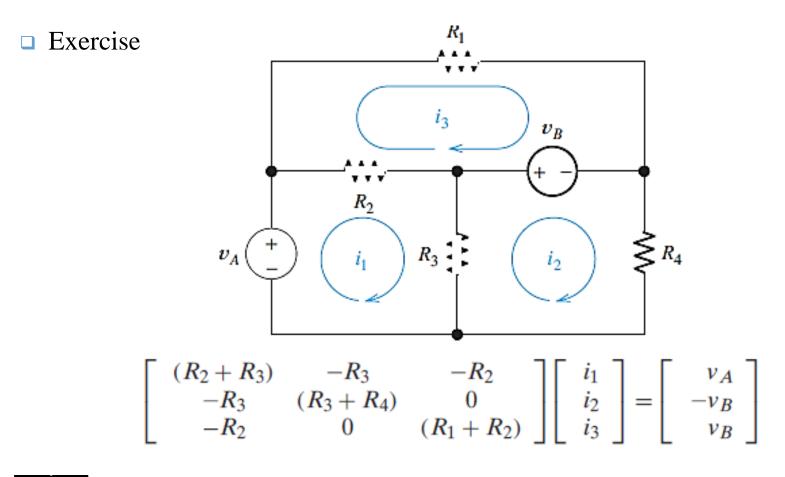
Current flowing through the 10 ohm



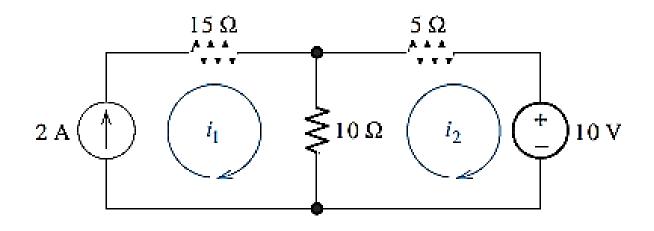
□ A Shortcut to Writing the Matrix Equations: R.I=V

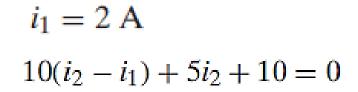


- Diagonal elements: sum of the resistances in mesh
- * Off-diagonal terms: negative of the resistance shared between mesh j and k
- Terms in V matrix: mesh voltage sources (+ or -)



Mesh Currents in Circuits Containing Current Sources





Supermesh

Write a KVL equation around the periphery of meshes 1 and 2 combined

$$i_{1} + 2(i_{1} - i_{3}) + 4(i_{2} - i_{3}) + 10 = 0$$

$$3i_{3} + 4(i_{3} - i_{2}) + 2(i_{3} - i_{1}) = 0$$

$$i_{2} - i_{1} = 5$$

$$i_{2} - i_{1} = 5$$

$$i_{2} = 0$$

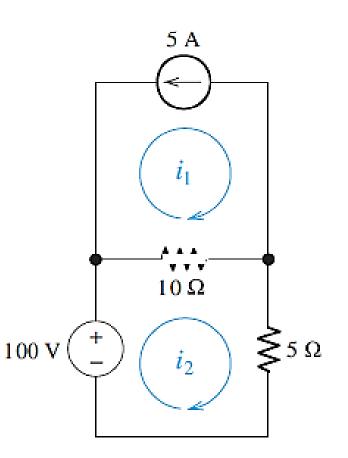
$$i_{3} = 0$$

$$i_$$

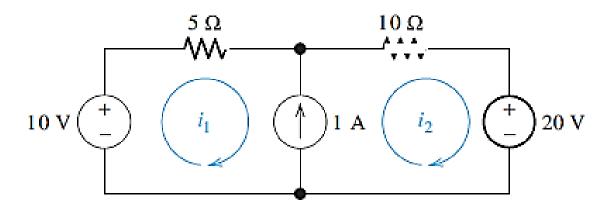
Exercise

$$i_1 = -5 \text{ A}$$

 $10(i_2 - i_1) + 5i_2 - 100 = 0$



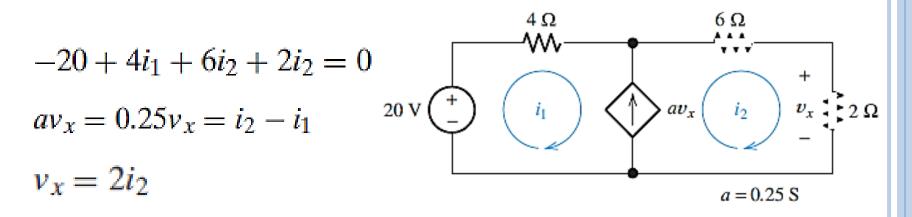
□ Exercise



 $5i_1 + 10i_2 + 20 - 10 = 0.$ $i_2 - i_1 = 1$

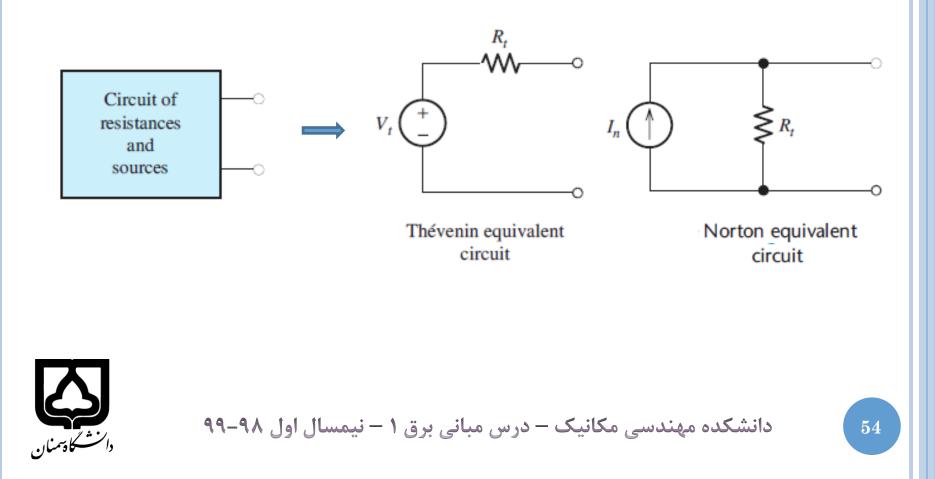
Circuits with Controlled Sources

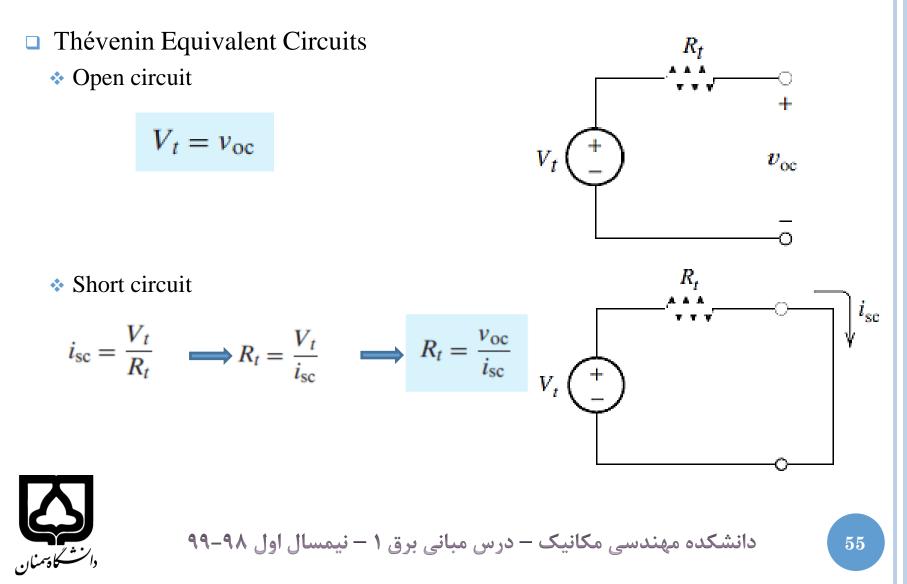
Example 2.15 Mesh-Current Analysis with Controlled Sources



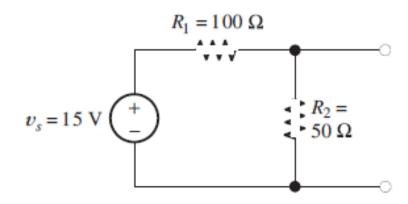
$$\implies \frac{i_2}{2} = i_2 - i_1 \qquad \implies \frac{4i_1 + 8i_2 = 20}{i_1 - \frac{i_2}{2} = 0} \qquad \implies \frac{i_1 = 1 \text{ A}}{i_2 = 2 \text{ A}}$$

□ Replace two-terminal circuits containing resistances and sources

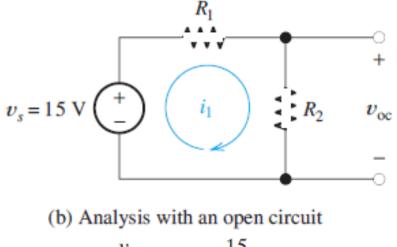




Example 2.16 Determining the Thévenin Equivalent Circuit



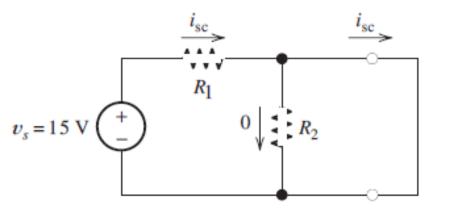
(a) Original circuit



$$i_1 = \frac{v_s}{R_1 + R_2} = \frac{15}{100 + 50} = 0.10 \text{ A}$$

$$v_{\rm oc} = R_2 i_1 = 50 \times 0.10 = 5 \,\mathrm{V}$$

Example 2.16 Determining the Thévenin Equivalent Circuit



(c) Analysis with a short circuit

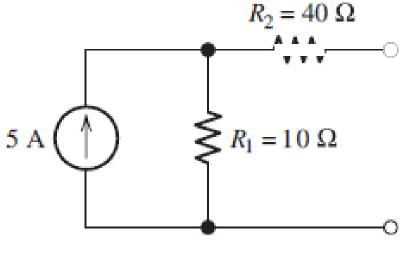
$$i_{\rm sc} = \frac{v_s}{R_1} = \frac{15}{100} = 0.15 \text{ A}$$

$$R_t = 33.3 \ \Omega$$

(d) Thévenin equivalent

$$R_t = \frac{v_{\rm oc}}{i_{\rm sc}} = \frac{5 \text{ V}}{0.15 \text{ A}} = 33.3 \Omega$$

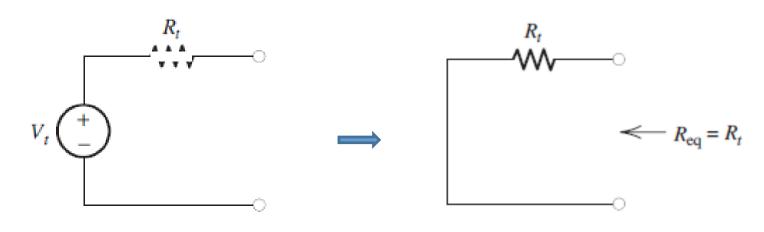
Exercise

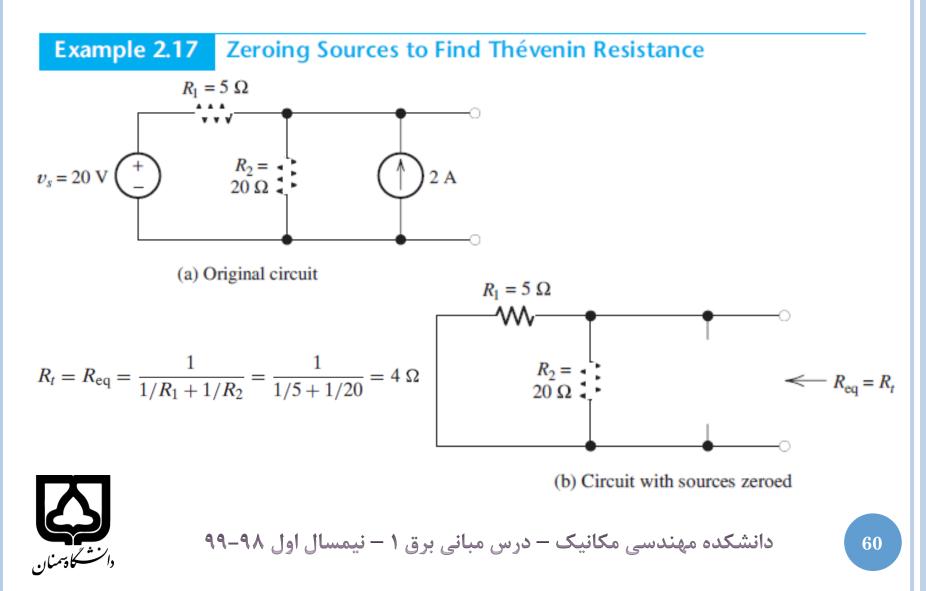


 $V_t = 50 \text{ V}, R_t = 50 \Omega.$

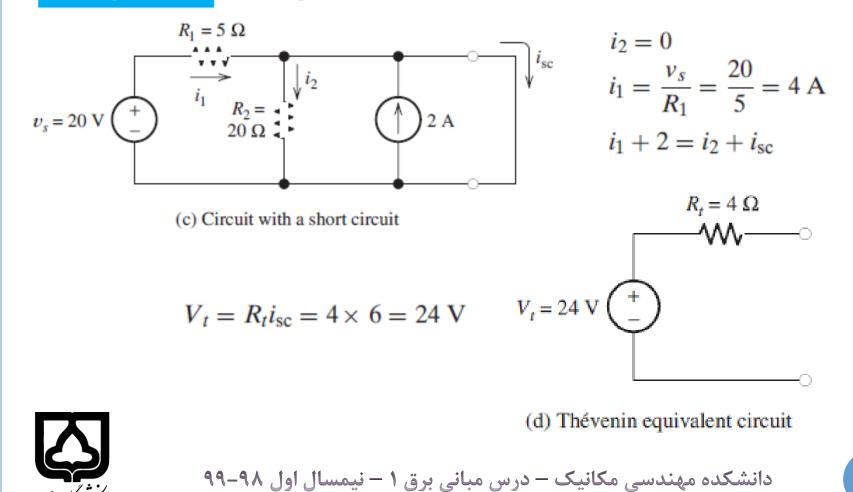
□ Finding the Thévenin Resistance Directly

- If network contains no dependent sources
- Zero the sources
 - ✓ Voltage source: Short circuit
 - ✓ Current source: Open circuit
- Find the Req

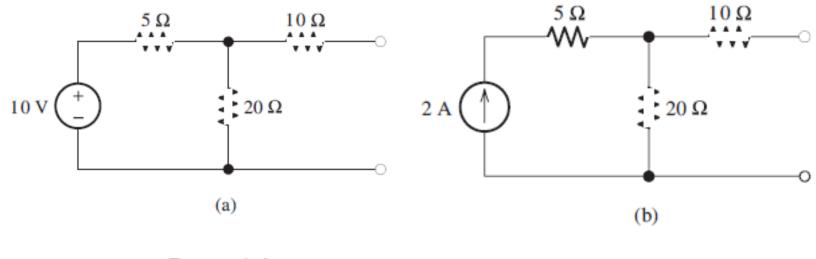




Example 2.17 Zeroing Sources to Find Thévenin Resistance

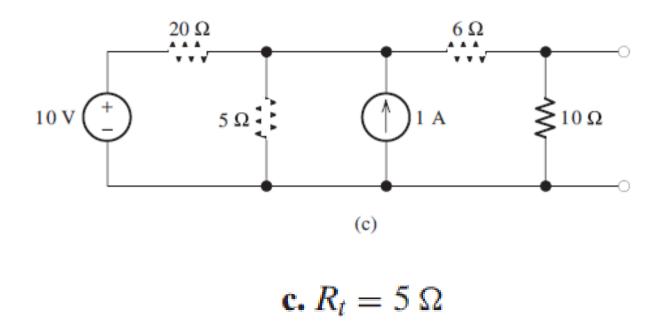


□ Exercise

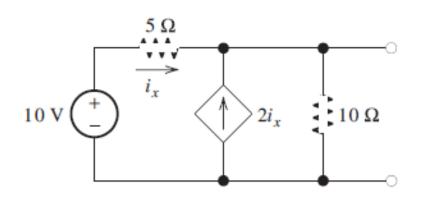


a. $R_t = 14 \Omega;$ **b.** $R_t = 30 \Omega;$

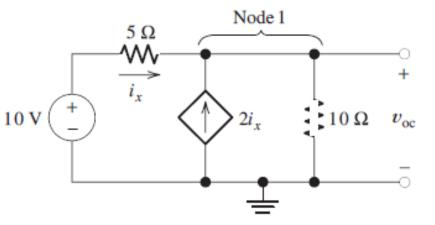
Exercise



Example 2.18 Thévenin Equivalent of a Circuit with a Dependent Source



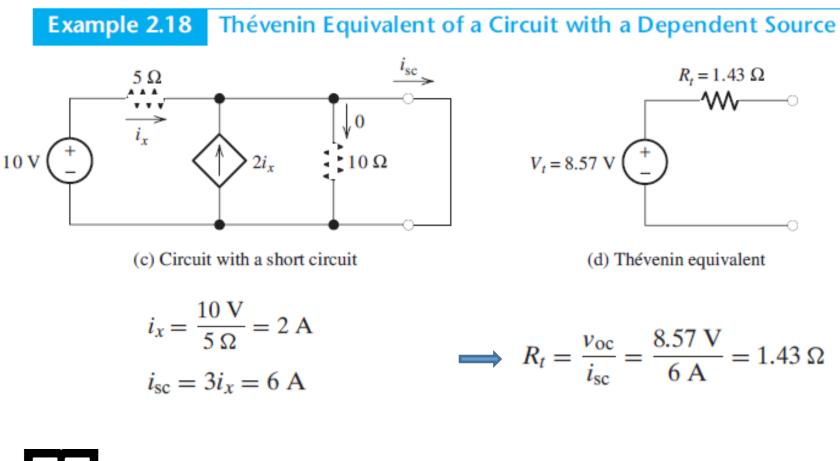
(a) Original circuit



(b) Circuit with an open circuit

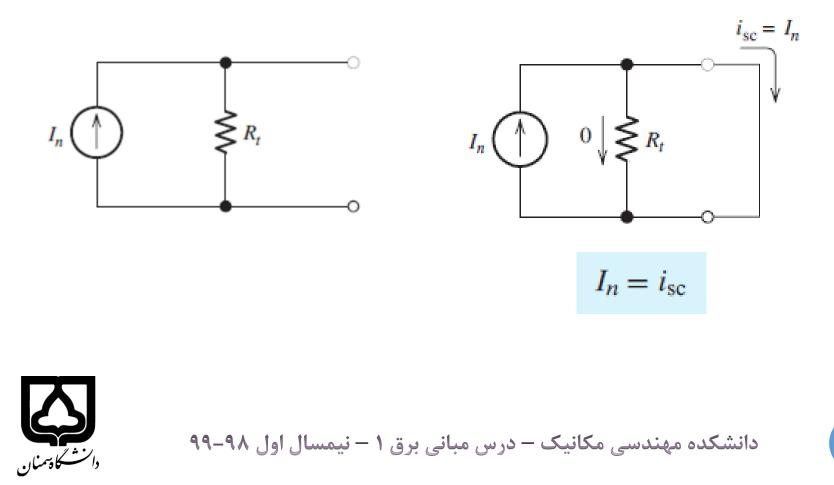
$$i_x + 2i_x = \frac{v_{\rm oc}}{10}$$
 $i_x = \frac{10 - v_{\rm oc}}{5}$

 $\implies 3\frac{10 - v_{oc}}{5} = \frac{v_{oc}}{10} \implies v_{oc} = 8.57 \text{ V}.$



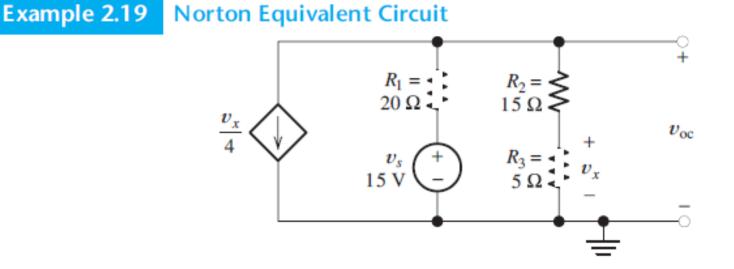
Norton Equivalent Circuit

* Resistance in the Norton equivalent is the same as the Thévenin resistance



□ Step-by-Step Thévenin/Norton-Equivalent-Circuit Analysis

- 1. Perform two of these:
 - \checkmark a. Determine the open-circuit voltage Vt = Voc.
 - \checkmark b. Determine the short-circuit current In = Isc.
 - c. Zero the independent sources and find the Thévenin resistance Rt looking back into the terminals. Do not zero dependent sources.
- * 2. Use the equation Vt = Rt.In to compute the remaining value.
- * 3. The Thévenin equivalent consists of a voltage source Vt in series with Rt
- * 4. The Norton equivalent consists of a current source In in parallel with Rt



(a) Original circuit under open-circuit conditions

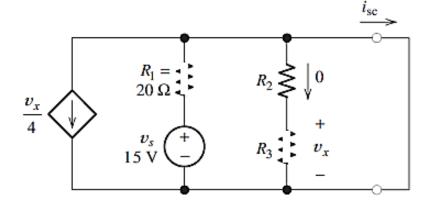
$$\frac{v_x}{4} + \frac{v_{oc} - 15}{R_1} + \frac{v_{oc}}{R_2 + R_3} = 0$$

$$v_x = \frac{R_3}{R_2 + R_3} v_{oc} = 0.25 v_{oc}$$

$$\implies \frac{0.25 v_{oc}}{4} + \frac{v_{oc} - 15}{R_1} + \frac{v_{oc}}{R_2 + R_3} = 0$$

$$\implies v_{oc} = 4.62 \text{ V}.$$

Example 2.19 Norton Equivalent Circuit



(b) Circuit with a short circuit

$$i_{\rm sc} = \frac{v_s}{R_1} = \frac{15 \text{ V}}{20 \Omega} = 0.75 \text{ A}$$

$$I_n = 0.75 \text{ A}$$

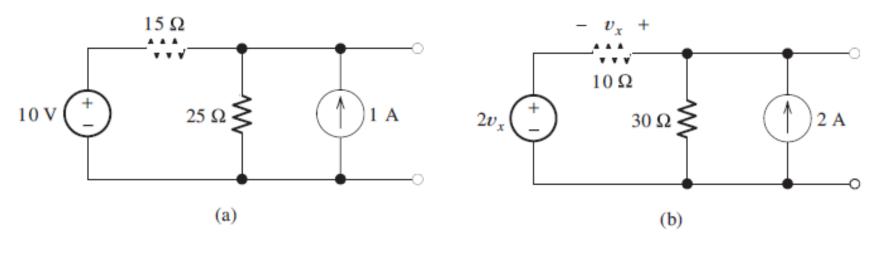
(c) Norton equivalent circuit

$$R_t = \frac{v_{\rm oc}}{i_{\rm sc}} = \frac{4.62}{0.75} = 6.15 \,\Omega$$

Chapter 2 - Resistive Circuits

2.6 THÉVENIN AND NORTON EQUIVALENT CIRCUITS

Exercise

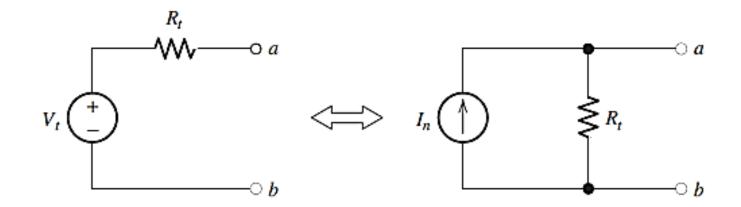


 $I_n = 1.67 \text{ A}, R_t = 9.375 \Omega$

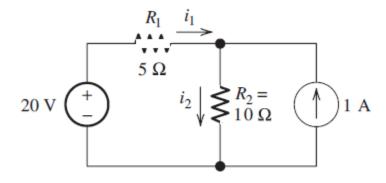
 $I_n = 2 \mathrm{A}, R_t = 15 \Omega$

Source Transformations

* Replace a voltage source in series with a resistance by a Norton equivalent circuit



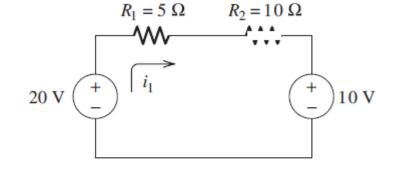
Example 2.20 Using Source Transformations



(a) Original circuit

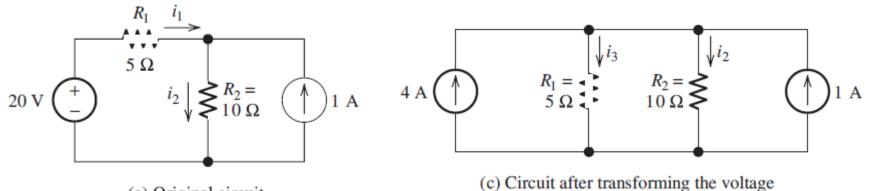
 $R_1 i_1 + R_2 i_1 + 10 - 20 = 0$ $i_1 = \frac{10}{R_1 + R_2} = 0.667 \text{ A}$

$$i_2 = i_1 + 1 = 1.667$$
 A



(b) Circuit after transforming the current source into a voltage source

Example 2.20 Using Source Transformations

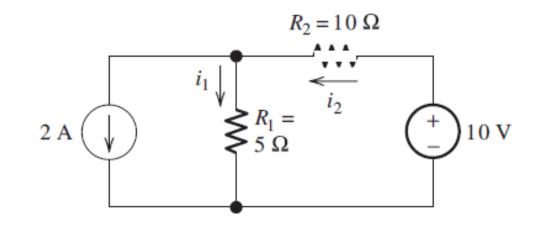


(a) Original circuit

c) Circuit after transforming the voltag source into a current source

$$i_2 = \frac{R_1}{R_1 + R_2} i_{\text{total}} = \frac{5}{5 + 10} (5) = 1.667 \text{ A}$$

Exercise

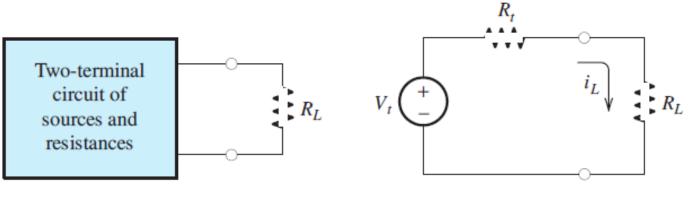


 $i_1 = -0.667 \text{ A}, i_2 = 1.333 \text{ A}.$

Maximum Power Transfer

When maximum possible power is delivered to the load?

(a) Original circuit with load



(b) Thévenin equivalent circuit with load

R,

2.6 THÉVENIN AND NORTON EQUIVALENT CIRCUITS

Maximum Power Transfer

$$i_{L} = \frac{V_{t}}{R_{t} + R_{L}}$$

$$v_{t} \left(p_{L} = i_{L}^{2} R_{L} = \frac{V_{t}^{2} R_{L}}{(R_{t} + R_{L})^{2}} \right)$$

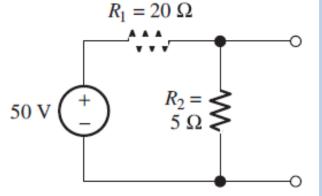
$$\frac{dp_{L}}{dR_{L}} = \frac{V_{t}^{2} (R_{t} + R_{L})^{2} - 2V_{t}^{2} R_{L} (R_{t} + R_{L})}{(R_{t} + R_{L})^{4}} = 0$$

$$R_L = R_t \qquad P_{L\max} = \frac{V_t^2}{4R_t}$$

 R_L

Example 2.21 Determining Maximum Power Transfer

$$R_t = \frac{1}{1/R_1 + 1/R_2} = \frac{1}{1/20 + 1/5} = 4 \ \Omega$$
$$V_t = v_{\text{oc}} = \frac{R_2}{R_1 + R_2} (50) = \frac{5}{5 + 20} (50) = 10 \ \text{V}$$



$$R_L = R_t = 4 \ \Omega$$

$$P_{L\max} = \frac{V_t^2}{4R_t} = \frac{10^2}{4 \times 4} = 6.25 \text{ W}$$

□ For a circuit composed of:

- Resistances
- Linear dependent sources
- * *n* independent sources
- □ Total response:

$$r_T = r_1 + r_2 + \cdots + r_n$$

□ Example:

$$\frac{v_T - v_{s1}}{R_1} + \frac{v_T}{R_2} + Ki_x = i_{s2}$$

$$i_x = \frac{v_T}{R_2}$$

$$v_T = \frac{R_2}{R_1 + R_2 + KR_1}v_{s1} + \frac{R_1R_2}{R_1 + R_2 + KR_1}i_{s2}$$

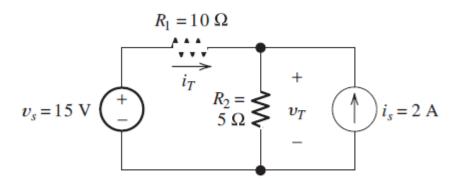
1

$$v_{1} = \frac{R_{2}}{R_{1} + R_{2} + KR_{1}} v_{s1}$$

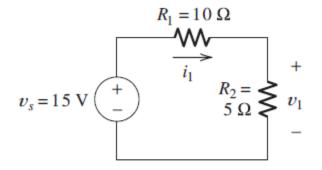
$$v_{2} = \frac{R_{1}R_{2}}{R_{1} + R_{2} + KR_{1}} i_{s2}$$

$$v_{T} = v_{1} + v_{2}$$

Example 2.22 Circuit Analysis Using Superposition



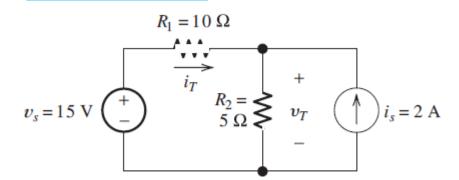
(a) Original circuit



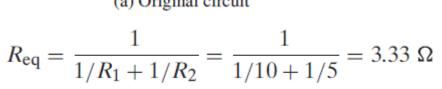
(b) Circuit with only the voltage source active

$$v_1 = \frac{R_2}{R_1 + R_2} v_s = \frac{5}{5 + 10} (15) = 5 \text{ V}$$

Circuit Analysis Using Superposition Example 2.22

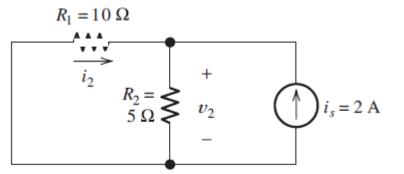


(a) Original circuit



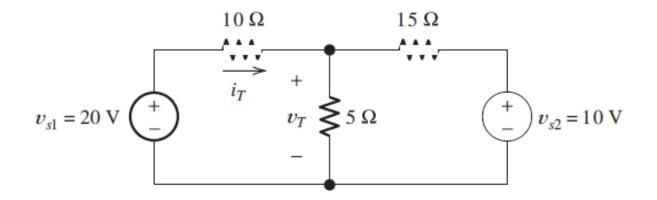
$$v_2 = i_s R_{eq} = 2 \times 3.33 = 6.66 \text{ V}$$

$$\implies v_T = v_1 + v_2 = 5 + 6.66 = 11.66$$



(c) Circuit with only the current source active

□ Exercise

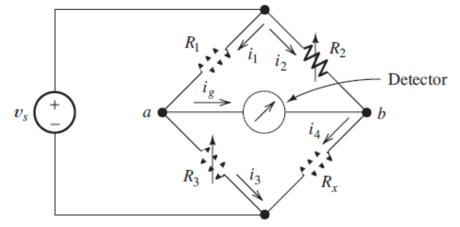


 $v_1 = 5.45$ V, $v_2 = 1.82$ V, $v_T = 7.27$ V, $i_1 = 1.45$ A, $i_2 = -0.181$ A, $i_T = 1.27$ A.

82

2.8 WHEATSTONE BRIDGE

□ A circuit used to measure unknown resistances



When detector indicates zero current: bridge is **balanced**

$$\frac{R_3}{R_1} = \frac{R_x}{R_2}$$

EXERCISES

P 2.1	P2.57	T 2.4
P 2.3	P2.65	T 2.5
P 2.24	P 2.66	T 2.6
P 2.25	P2.80	
P 2.34	P2.91	
P 2.35	P2.94	
P 2.56	P2.103	

