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Chapter 5 - Distributed Forces

5.1 INTRODUCTION

2 Actually, “concentrated” forces do not exist in the exact sense, since every external
force applied mechanically to a body is distributed over a finite contact area, however
small.

Enlarged view
of contact
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Chapter 5 - Distributed Forces

5.1 INTRODUCTION

When forces are applied over a region whose dimensions are not negligible compared
with other pertinent dimensions, then we must account for the actual manner in which
the force is distributed.

We do this by summing the effects of the distributed force over the entire region using
mathematical integration.

This requires that we know the intensity of the force at any location.
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Chapter 5 - Distributed Forces

5.1 INTRODUCTION

0 There are three categories: ,:—f’;]/

< (1) Line Distribution

< (2) Area Distribution

< (3) Volume Distribution

)
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Chapter 5 - Distributed Forces

5.1 INTRODUCTION

Section A: CENTERS OF MASS AND CENTROIDS
Center of Mass
Centroids of Lines, Areas, and Volumes
Composite Bodies and Figures; Approximations
Theorems of Pappus

Section B: SPECIAL TOPICS
Beams—EXxternal Effects
Beams—Internal Effects
Flexible Cables
Fluid Statics

)
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Chapter 5 - Distributed Forces

5.2 CENTER OF MASS

If we suspend the body from any point the body will be in equilibrium under the action of the
cord tension and the resultant W of the gravitational forces acting on all particles of the body.

If we repeat for other points, the center of gravity (CG) will be determined by intersection of
these lines.

S
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Chapter 5 - Distributed Forces

5.2 CENTER OF MASS

Determining the Center of Gravity

The moment of the resultant gravitational force W about any axis equals the sum of the
moments about the same axis of the gravitational forces dW acting on all particles.

I ™ T
| | |
J- xdW [ ydW I- zdW I
TTw YT Tw T w | §
y I "’dW lW
|
|

[ x dm [y dm [ zdm L - :\¥ lr

= T > = X . |

* m g m z m Ny R ‘_”\J
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5.2 CENTER OF MASS

2 Determining the Center of Gravity

< Vector form
r=xi-+y +:zk
r=x1+yj+zk
< If p IS not constant:

[:ﬂpdV

x =

I.pdV

)

dC—*‘éW’)

'S ~
jrdm
T =
m
. v,
[J-’pdV [zpdV
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5.2 CENTER OF MASS

0 Using symmetry in CG determination
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5.3 CENTROIDS OF LINES, AREAS, AND VOLUMES

2 (1) Lines
dm = pA dL
.
J.de fydL J.zdL
TTL Y= T
v
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5.3 CENTROIDS OF LINES, AREAS, AND VOLUMES

0 (2) Areas

d%wf)
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Chapter 5 - Distributed Forces

5.3 CENTROIDS OF LINES, AREAS, AND VOLUMES

2 (3) Volumes

T
I
I
— I
: *dW W
) jxdv B jydv ) jzdv | I oy
Ty YTy TV T
AN
\\‘(/y’ 57/>
\\""/
\\x
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Chapter 5 - Distributed Forces

5.3 CENTROIDS OF LINES, AREAS, AND VOLUMES

Integration guidelines:

(1) Order of Element.

v"Whenever possible, a first-order differential element
should be selected.

(2) Continuity. & Y
v"Whenever possible, we choose an element which can be
Integrated in one continuous operation to cover the figure. I\ ay
CTS% S/ _la\ ,
RPN,
— - <

@ |
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Chapter 5 - Distributed Forces

5.3 CENTROIDS OF LINES, AREAS, AND VOLUMES

Integration guidelines: y

(3) Discarding Higher-Order Terms.

v Higher-order terms may always be dropped compared with
lower-order terms.

| [ dx

(4) Choice of Coordinates.

v"We choose the coordinate system which best matches the
boundaries of the figure.

)
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5.3 CENTROIDS OF LINES, AREAS, AND VOLUMES

Integration guidelines:

(5) Centroidal Coordinate of Element

v it is essential to use the coordinate of the centroid of the element for the moment arm in expressing
the moment of the differential element.
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Chapter 5 - Distributed Forces

Sample Problem 5/1 /\

Centroid of a circular arc. Locate the centroid of a circular arc as shown in r_-
the figure. /- d
“o C
~ ‘\& - - - -
Choosing the axis of symmetry as the x-axis makes y = 0. N -
M - .
dL = rde ~
L = 2ar

[Lx = J x dL] — (2ar)x = J_ (rcos@)rdf

2arx = 2r’ sin a

rsin o

x =

¥

)
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Chapter 5 - Distributed Forces

Sample Problem 5/2

Centroid of a triangular area. Determine the distance A from the base of a ;T
triangle of altitude A to the centroid of its area. |
|
|
| dy
| | n
dA = x d_‘}-’ | / |
| X }
x/(h — y) = blh | y
| 1
X _ ¥ __
_ bh _ f” b(h —y) bh? | | T
= dA —y = dy = = b
Ay f Yo dA] 9 V=) Y W=¢ | |
_ h
— y=3

)
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Chapter 5 - Distributed Forces

Sample Problem 5/3

Centroid of the area of a circular sector. Locate the centroid of the area r
of a circular sector with respect to its vertex.

Solution I.
dA = 2rya dry
A% = | x, dAl

—> g—i{m’zﬁ=" (m)@rﬂadrﬂ}

0 o

e
—

3 N Solution I \

—
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<

T
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Chapter 5 - Distributed Forces

Sample Problem 5/3

Centroid of the area of a circular sector. Locate the centroid of the area r
of a circular sector with respect to its vertex.

Solution IlI.

dA = (r/2)(r d6) x, = %r cos f
[‘!'1’5-3E - J-xc dA]

q {I'Q{I}E: J- {%r cos HJ{%TE dﬂ}

riax = %rs sIn o Ar/3r
Y /¢
_ 2rsina Solution II Ce *I/j .
] Y
« ! B

@ r H-! !-H :
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Chapter 5 - Distributed Forces

Sample Problem 5/4

i
Locate the centroid of the area under the curve x = ky® fromx = 0 tox = a. |
|
=
: |
Solution |. |
|
dA = y dx |
|

[A;JT:=J‘xCdA] —p EJDydx=J;xydx

I:kyg —-\/’f,/

y = (x/k)"® and k = a/b? .'T
.-
3ab _ 3a%  _ 4 b
240 — _ 4 _ 3.3
A X 7 X Tl‘l x =ky \\,r’f/_?

45 = [ y.dAl —p ooy [ (S)yas

2
p 3ab__ 3ab

_ 2
y=zb I~ o
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Sample Problem 5/4

y
| — 3
Locate the centroid of the area under the curve x = ky® from x = 0 to x = a. | X=ky —-\/,,/
|
=z
: |
Solution II. | . b
| C T
| 1§
xc=x—%{a—xJ={a+x}f’2. | ;I
- -b -b a ———X
— — a+x
— L&x=chdA] IJ {a—x}dy=J ( ){a—x}dy
0 0 2 Y a+x
I—i—IC: — o
bl —— LA —/—/—/7
. -b -b | 3
—> U5-[yddl  §| @-wdy=| ya-xdy TRy~ @
| /
A :
|
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Chapter 5 - Distributed Forces

5.5 COMPOSITE BODIES AND FIGURES; APPROXIMATIONS

When a body or figure can be conveniently divided into several parts whose mass
centers are easily determined, we use the principle of moments and treat each part as a
finite element of the whole.

X3
(m]_ - Hlog —+ g }X — Tnl.?E]_ + TTLEEE + m,gfg st |
€ .r2 >
l'f A —-ﬂ—? = o
— — — 2 |
Y Y - /
— —InX — —my — Iz ‘ [
X - T Y - S Z — Ty Il e !
. 2Im 2m 2Im . ! | Gy « G| !
my
my mq
X

)
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Sample Problem 5/6 y
|
- I~ 12~ |
Locate the centroid of the shaded area. |
I
. _ _ . 4”
A x y xA yA !
PART in.? in. in. in.? in? \ i”
1 120 6 5 720 600 - |
3 s
2 30 14 1073 420 100 a N
3 —14.14 6 1.273 —84.8 ~18 v |
— 5
4 -8 12 4 —96 —39 3 2" 2" |
TOTALS 127.9 959 650 —— ==
—  YAx — 959 . -
— [X= lA] X=1271g=7.501n. 1 4 ,
_ SAy — 650 | -
pr— pr— pr— r‘ 1
— [Y SA ] Y 1979 5.08 in. |
3

/30N

)
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Chapter 5 - Distributed Forces

9.9 THEOREMS OF PAPPUS

0 Calculating the surface area generated by revolving a plane curve about a nonintersecting axis

dA = 2my dL
A=2wfydL
yL = [ydL

p
—>|kA — zw—Lj

<« If a line is revolved through an angle 0 less than 2z: (0 in radians)

s )
—p | A = OyL
\ Y

)
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9.9 THEOREMS OF PAPPUS

0 Calculating the volume generated by revolving an area about a nonintersecting line in its plane

dV = 27y dA
V=2r|ydA
YA = [ydA

N
" vy

<« If an area is revolved through an angle 0 less than 2z: (0 in radians)

s —
M vy

)
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Chapter 5 - Distributed Forces

Sample Problem 5/9

Determine the volume V and surface area A of the complete torus of circular
cross section.

V = 0rA = 27(R)(wa®) = 27°Ra®

A = 6rL = 27(R)(2ma) = 47°Ra

)
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Chapter 5 - Distributed Forces

Sample Problem 5/10

Calculate the volume V of the solid generated by revolving the 60-mm right-
triangular area through 180° about the z-axis. If this body were constructed of

steel, what would be its mass m?

V = 67A = w30 + 2(60)1[3(60)(60)] = 2.83(10%) mm?

1m r
m 1000 mm

k
m = pV = {TSBU —ga][z.satmﬁtrmmﬁ][

— 221 kg

30
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Chapter 5 - Distributed Forces

5.6 BEAMS - EXTERNAL EFFECTS

Beams are structural members which offer resistance to bending due to applied loads.

Beams are undoubtedly the most important of all structural members, so it is important
to understand the basic theory underlying their design.

We must:
First, establish the equilibrium requirements of the beam as a whole and any portion of it
considered separately.
Second, we must establish the relations between the resulting forces and the accompanying
Internal resistance of the beam to support these forces.
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Chapter 5 - Distributed Forces

5.6 BEAMS - EXTERNAL EFFECTS

Types of Beams: # # 4
Statically determinate beams o | L |
. L , (@] [ O _Q
v External support reactions can be calculated by the Simple Contimon
methods of statics alone are called. 4
o | | | ol
Statically indeterminate beams Cantilever |
End-supported cantilever
v Has more supports than needed to provide equilibrium 4
v" Load-deformation properties should be considered to = ‘L
calculate external support reactions LA O
Combination Fixed
Statically determinate beams Statically indeterminate beams J

)
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5.0 BEAMS - EXTERNAL EFFECTS

0 Distributed Loads
< Broking to simple cases

v Constant ”"I
v Rectangular e 1 [ } ‘ 1 L,
v Triangular 4 ¢ b L
A B
~—L/2—1

: -  or3
\iﬂ‘w T*fl[ m

e > S baw! (w30 — SilSo oo 00510
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Ry=1(wy—wyL
~—2L/3—=1
R;=wL :
— L/2 ~
st
Ty
|

Wy

| |
| L |




5.0 BEAMS - EXTERNAL EFFECTS

2 Distributed Loads
< General distribution

szwdx
wadx
x = R

Chapter 5 - Distributed Forces
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Sample Problem 5/11

Determine the equivalent concentrated load(s) and external reactions for
the simply supported beam which is subjected to the distributed load shown.

Chapter 5 - Distributed Forces

| 4? I
‘ 280 Ib/t
120 lhff’c | [ ] | \
[SM, = 0] 1200(5) + 480(8) — Rp(10) = 0 Ap
Rp = 984 1b
%(150} (6) = 480 1b
SMy = 0] RA(10) — 1200(5) — 480(2) = 0 = B’Jf_f,,,,..i,-ff"jﬁn /R
R, = 696 1b 120 1b/t | 120 Ib/ft
A Y B
(120)(10) = 1200 Ib
12001b 4801b
5 3’
., y(_ 4 .
Rp

@ Ry

dcféw” S baw! (w30 — SilSo oo 00510
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Sample Problem 5/12

Determine the reaction at the support A of the loaded cantilever beam.

u.::{.x} w = wq + kx®
000N/ 1000 N/m _/_ o [H 2024
PH T o
k = 2 N/m* -~ :
. A
B 2 Ifl- 8
— R=dex=J {IUGO—ng}dx=(IDU[}x—E) = 10050 N 10(i'50N
0 0
e 449 m—
J‘ Ax_&- A y =
xw dx -8 M
— _ 1 0B e — 2, 258 _ 4 A |
P JO £(1000 + 2%) dv = T2 (5005 + 22%)[0 = 449 m A, -
— [2M, = 0] M, — (10050)(4.49) = 0
My = 45100 N-m
[SF, = 0] A, = 10050 N

=" S bl (30 — Sl (cwaiigen ousCislo




Chapter 5 - Distributed Forces

5.7 BEAMS - INTERNAL EFFECTS

2 In addition to supporting tension or compression,
a beam can resist:

< Shear
< Bending
< Torsion

v These effects represent the vector components of the Q
resultant of the forces acting on a transverse section of
the beam.

Torsion T

M

v
@ Combined loading

s = S baw! (w30 — SOlo i 0uSlSlS




Chapter 5 - Distributed Forces

5.7 BEAMS - INTERNAL EFFECTS
< The conventions for positive values of shear V and bending moment M :

+V
+M +M

+V

< Physical interpretation of the bending couple M :

)
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Chapter 5 - Distributed Forces

5.7 BEAMS - INTERNAL EFFECTS

2 General Loading, Shear, and Moment Relationships

< Sum of the vertical forces =0 w=f@) ] —~ [-ax
V-wdx - (V+dV) =0 HIHW I \ Vt Tlw
) % .\ M +dm
— [w _ _f&_"’ ‘ | % | /p
-/ N —— dx

v . V+dV
" dV = —J‘ w dx
JVa

‘xl:l

PV =V, + (the negative of the area under
the loading curve from x; to x)

)
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5.7 BEAMS - INTERNAL EFFECTS

2 General Loading, Shear, and Moment Relationships

< Sum of the moments about left side =0 4,‘ . dx
M-+ w dxdE—x +(V+dV)dx — (M +dM) =0 {Il }w I V)t w
terms w(dx)*/2 and dV dx may be dropped { Z 2 ( Z > M +dM
[ dMﬂ\ rflrjf'zﬂf b ‘ l’
—} _ — = | \ X dx
LV dx ) dx® v V+dV
B N J

M X
[ dM = [ Vdx == M = M, + (area under the shear diagram from x; to x)
“ M,

0 = Xp

)
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Chapter 5 - Distributed Forces

Sample Problem 5/13 4 kN
Determine the shear and moment distributions produced in the simple 6 m l’ 4 m
beam by the 4-kN concentrated load. .
T O
4 kN
R, =16EkN Ry = 24 kN Y
|
| l
—Xx
[XF, = 0] 16 -V=0 V =16 kN
— I
[SMp, = 0] M-16x=0 M= 16x t | T
R;=16kN R, =24kN
[2F, = 0] V+24=10 V=-24kN
[ZMp, = 0] —(24)(10 —x) + M =0 M= 2.4(10 — x) | o u
|

,t X 10 —xT
VvV
@ 1.6 kN 2.4 kKN
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Chapter 5 - Distributed Forces
Sample Problem 5/13 4 kN

Determine the shear and moment distributions produced in the simple 6 m l’ 4 m
beam by the 4-kN concentrated load. '

R, =16kN Ry, = 24 kN

[SF, = 0] 16 -V=0 V=16kN
—

[SMp, = 0] M-16x=0 M= 16x

[XF, = 0] V+24=0 V=-24kN
—

[SMp, =01  —(24) (10— x) +M=0 M= 24(10 — x)

)
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Sample Problem 5/14

The cantilever beam is subjected to the load intensity (force per unit length)
which varies as w = w, sin (7x/l). Determine the shear force V and bending mo-
ment M as functions of the ratio x/[.

Chapter 5 - Distributed Forces

A

17

T T~

N

: - 2w, ]
SF,=01 Vo— | wdx=0 Vo= | wysin"rdx=""
0 0 [ T
) .l -
SM = 0] —MD—J x(w dx) = 0 M[.=—J wox sin - dx
0 0
Z
—wol* [ | mx x| _ _w.].-f
— M, = — [5111 ] 7 cos L =

dww” S baw! (w30 — SilSo oo 00510




Chapter 5 - Distributed Forces

-V ~x
[dV = —w dx] J qv — —J e T T
Va 0 l 1 Wy S
11 A
; Qwel  wl [ R
wol ™ _ o _ *0 mx
— V- V,= [Tﬂcns TL - - (c-:}s ] 1)
I —
v 1( ) l
E—— ——=—|1+ cos—
wol
0.637
-M -x I.L’n-'! _—
[dM = V dx] J dM=J —(1+cns—)dx
M, 0o T [ v
ol
! x wy
— M—Mﬂ=w—0[x—£sinE]
¥ m |'I 0
0 | | |
i l 0 0.2 /1 06 08 1.0
—_— M= 2 O x—l-isinE—O 0 "
T T T [ I I I
M
M 1/x 1 wol
— M _i(x 1, m) E
[ ™ l _0.318

@ " = Tr
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Sample Problem 5/15

Draw the shear-force and bending-moment diagrams for the loaded beam
and determine the maximum moment M and its location x from the left end.

0<x<4ft
— [ZFJ = 0]
) [XM = 0]

)

d%wf)

12.5x2

WI':E

2

|
-4
¥

=

247 1b

V = 247 — 12.5x*

3

x
4100

M

M+ (12535 —24Tx = 0 M — 247x — 4.174°

Vv 300 1b

12 —x

il

653 1b
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100 I/t
# 300 Ib
P
f”t(/'l' [ !
-
! I S o 2 >
y
| 20? b 4001
8 |
~31 : 300 1b
| fﬂf’l I ‘
L ¥ Y
— X
TRI = 2471b )YRE - 653 1b
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4 < x<8ft

[ZF,=0] V +100(x —4) + 200 - 247 =0

[SM=0] M+ 100(x — 4)> 5 L 4 2000 - 2(4)] — 247x = 0
) M = —267 + 44Tx — 50x2 100(x — 4)
2001 1 x-4
¥ 1 L2
N Yy

)Y X
1%
247 1b

The analysis of the remainder of the beam

B<x<101t

)

d%wf)

—) V= -3531b and M = 2930 — 353x

V =447 — 100x

Chapter 5 - Distributed Forces

100 I/t
# 300 Ib
P
f”t(/'l' [ '
-
! YL ST By G B Y
y
| 20? b 4001
8 |
~31 : 300 1b
| fﬂf’l I ‘
L ¥ Y
— X
TRI = 2471b )YRE - 653 1b
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M, Tb-ft : 353
?ﬁk————'
|
| |
i y : : 07125
|
600
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100 b/t
| 3001b
-~ f.# [ l ' [
L ]
|
! 4’ 4’ = 2/ | L.
Y 2001b
| o 40{; Ib
<3 I 300 1b
| ¥ l |
|
Y4 Y
— X
tRI =2471b * R,=6531b
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Chapter 5 - Distributed Forces

5.8 FLEXIBLE CABLES

One important type of structural member is the flexible cable which is used in suspension
bridges, transmission lines, ...

Flexible cables may support a series of distinct concentrated loads, or they may support loads
continuously distributed over the length of the cable.

HW{
Fy F F
@ a3

In some instances the weight of the cable is negligible compared with the loads it supports. In
other cases the weight of the cable may be an appreciable load or the sole load and cannot be
neglected.

)
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5.8 FLEXIBLE CABLES

2 General Relationships
< Resultant (R) of the variable and continuous load

R=de=dex

ki

fde w
R

RE=fde X =

o
':u-é\

)
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Chapter 5 - Distributed Forces

5.8 FLEXIBLE CABLES

2 The equilibrium condition of the cable is satisfied if each infinitesimal element of the
cable is in equilibrium. y

(T +dT)sin (@ +df) = Tsinf + w dx
(T + dT)cos (8 +df) = Tcos @ —x+dx—>‘

—_— 4)_‘
2 The trigonometric expansion for the sine and cosine — l:r—q,—a—/—? —x
T ‘g 0 + dob

(T +dT)(sin@® +cosf@df) =Tsinb + wdx
(T +dT)(cos@ —sinfdf) =Tcoséb

)
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5.8 FLEXIBLE CABLES
2 Dropping the second-order terms and simplifying

TcosOdO +dTsinf =wdx =p d(Tsinf)=uwdx

Chapter 5 - Distributed Forces

—Tsinfdf +dTcos =0

T =Tycos ) G

!

d(T, tan ) = w dx

)

dC—*‘éW’)

tan 6 = dy/dx dy w
————

=P  d(T cos ) =0

y
|
|
.
+
l o ””\ T +dT

the horizontal component of T
remains unchanged

dxﬂ N Tﬂ

the differential equation
for the flexible cable

t.ia..:b..u‘ VIS — t.ia..’lfuo (W S0 PYEL Wt} K




Chapter 5 - Distributed Forces

5.8 FLEXIBLE CABLES

The differential equation for the flexible cable

e ™

w
dﬂ:g T[l

. v

The solution to the equation is that functional relation y=f(x) which satisfies the equation
and also satisfies the conditions at the fixed ends of the cable, called boundary conditions

)
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5.8 FLEXIBLE CABLES

2 Parabolic Cable

< \When w IS constant p
y wx
dx T,

< 0rigin at the lowest point of the cable:

w = Load per unit of horizontal length

dyl/dx = 0 whenx =0  =p = y

|

¥ x I.UIE i
—bjdy=jﬁdx — | y=—- |
0 o T |
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5.8 FLEXIBLE CABLES

2 Inserting boundary condition

wx> x =Ilyandy = hy wly*

y 9T, " 2h,

0 From the Pythagorean theorem T = JTy® + woa? = wx® + (1,52h,)°

0 The maximum tension:  x =1, = T, = wiyJ1 + ([4/2h,)°

)
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5.8 FLEXIBLE CABLES

0 We obtain the length S 5 of the cable from the origin to point A

ds = J(dx)* + (dy)?

w = Load per unit of horizontal length

Sy l4 '
— J ds = J J1 + (dyldx)? dx = f J1 + (wx/Ty)? dx
0 0

0
nin—1) nin—1)(n — 2)
o 3! *

h 2 4
1+E(_A) _E(h_ﬂ) L.
s\1,/) 5\L,

3+

< Using the binomial expansion (1 + x)" =1 + nx +

la w2x? it
— Sy = 1+ — +eee Jdx =1,

0 ZTDE STD4
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5.8 FLEXIBLE CABLES

2 For a suspension bridge

L
T = “”? J1 + (L/ah)?

8/h\2 32/h
= —+——— _— | —
S=L1 3(1,) S(L

)

dC—*‘éW’)

)+
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Chapter 5 - Distributed Forces

5.8 FLEXIBLE CABLES

0 Catenary Cable

< A uniform cable, suspended from two points A and B and hanging under the action of its
own weight only
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5.8 FLEXIBLE CABLES

0 Catenary Cable

dEy_ M ds
dx? T, dx
(o 1) :"
y=—|cosh——-1
..LL TD IB }:i IA =
T X |
= — sinh — |
’ M T, : T
h
T=T cnshE—T + 'y I !
0 Tﬂ_ 0 LY }? s : l
—_—— e — — T e — = A= — —

)
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Chapter 5 - Distributed Forces
Sample Problem 5/16

A 100-ft length of surveyor’s tape weighs 0.6 1b. When the tape is stretched
between two points on the same level by a tension of 10 lb at each end, calculate
the sag & in the middle.

T i T
w = 0.6/100 = 0.006 1b/ft ~—————— L -
A <, B
2s = 100 or s = 50 ft.
[T% = u?s? + T’ 10* = (0.006)*(50)* + Ty
To = 9.9951b
T =T, + uyl 10 = 9.995 + 0.006k

h=0.750ft or 9.00 in.

)
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Chapter 5 - Distributed Forces
Sample Problem 5/17

0 300 m -

The light cable supports a mass of 12 kg per meter of horizontal length and N -1— -
is suspended between the two points on the same level 300 m apart. If the sagis | 60 m ~
60 m, find the tension at midlength, the maximum tension, and the total length
of the cable. |

2 2 12 kg/m
[Tﬁ _wL ] p, = OA1TTG007 _ o) ke/
8h 8(60)

wl L \2
[Tm—? “(E)]

B 12{9.31){10‘%(%0}\{ ( 300 )2 _
—p  Tmax = 9 1+ 4(60)) 28.3 kN

R = 12(150)9.81)(107%)
= 17.66 kN

2 4
S = 300[1 + 5(1) — @(1) +} = 300[1 + 0.1067 — 0.01024 + ---]= 329 m

3\5 5 \H
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5.9 FLUID STATICS

A fluid:
Any continuous substance which, when at rest, is unable to support shear force.

Thus, a fluid at rest can exert only normal forces on a bounding surface.

Fluids may be either gaseous or liquid.
The statics of fluids:

v “Hydrostatics” when the fluid is a liquid
v “Aerostatics” when the fluid is a gas

)
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5.9 FLUID STATICS

2 Fluid Pressure
< Pascal’s law :

v Pressure at any given point in a fluid is same in all directions |
|
|
— _ — d dx dy
P1—=P2=P3s— P z Pi—
/ ps ds dz
D1 dydz_____:h ‘!
dy 2,
B/l T T —x
m
dx dy dx |
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5.9 FLUID STATICS

2 Fluid Pressure
< In all fluids at rest, the pressure is a function of the vertical dimension

I pdA I
pdA + pgdAdh — (p +dp)dA =0 i ¢ ifla
—> dp = pg dh 1
P = P8 pgcmdhld—f’ l_”_dh
—»Ep =pot pghj | T |
(p +dp)dA

v The common unit for pressure in SI units is the kilopascal (kPa)

)
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p = pgh = (1.0 —f)(g.m %){ 10 m) = 98.1(103 =83 i) ~ 98.1 kN/m? = 98.1 kPa
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5.9 FLUID STATICS

- Hydrostatic Pressure on Submerged Rectangular Surfaces

< The resultant force acts at some point P called the center of pressure.

Liquid

surface\

/'7\
/

/

Sk

e > S baw! (w30 — SilSo oo 00510
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5.9 FLUID STATICS

- Hydrostatic Pressure on Submerged Rectangular Surfaces

R=b[da =ba
+ R may therefore be written in terms of the average pressure Py,

1
Pav — §(P1 + pE)

—>R=pavﬂ=ngA h =ycos@

)
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5.9 FLUID STATICS

Hydrostatic Pressure on Submerged Rectangular Surfaces
Obtaining the line of action from the principle of moments -

_ f&’dﬂ’

#Y:
J ax

R passes through the centroid C of the trapezoidal area
defined by the pressure distribution in the vertical section

)
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5.9 FLUID STATICS

- Hydrostatic Pressure on Submerged Rectangular Surfaces
< \We may simplify the calculation by dividing the trapezoid into a rectangle and a triangle

Liquid

= TN
’ - 4
Y /! )
/
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5.9 FLUID STATICS

0 Hydrostatic Pressure on Cylindrical Surfaces
< Find R by a direct integration
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5.9 FLUID STATICS

Hydrostatic Pressure on Cylindrical Surfaces

A simpler method: Equilibrium of the block of liquid

v The equilibrant R is then determined completely from the equilibrium equations which we apply to the
free-body diagram of the fluid block.

[ |Py
/
/e Y i
/
Px_:'g-
B
| w R
|
‘}I‘
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Sample Problem 5/19 A
1—‘.7 .
m

A rectangular plate, shown in vertical section AB, is 4 m high and 6 m wide
(normal to the plane of the paper) and blocks the end of a fresh-water channel 3 m I
deep. The plate is hinged about a horizontal axis along its upper edge through A
and is restrained from opening by the fixed ridge B which bears horizontally against

the lower edge of the plate. Find the force B exerted on the plate by the ridge. 3 m
Y I=--LB
[p.. = pghl Doy = 1.000{9.31){%) = 14.72 kPa y
|
A,
R = p, Al R = (14.72)(3)(6) = 265 kN
== E:: A
[SM, = 0] 3(265) —4B=0 B = 198.7kN T
2m 'l mg 4 m
R =y =
lm
¥
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Sample Problem 5/21

Determine completely the resultant force R exerted on the cylindrical dam
surface by the water. The density of fresh water is 1.000 Mg/m?, and the dam has
a length b, normal to the paper, of 30 m.

_ 1.000)(9.81)(4
P, = pghA = %br _ 4 }(2 %) 30)(4) = 2350 kN
(4)?
mg = pgV = (1.000)(9.81) (30) = 3700 kKN
[SF, = 0] R, = P, = 2350 kN
#
[SF, = 0] R, = mg = 3700 kN

—p [R=JR’>+R* R =,(2350)*+ (3700)? = 4380 kN

4 16
2350 — | + 3700 —
4r (3) (311')

—PPxé+mg——RTx={], x = = 2.55m

3 - 3700

)
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Chapter 5 - Distributed Forces

e

Arc Segment T | r = rsina —
~ \/I a
Quarter and Semicircular Arcs
. -
| A r W
LWl ___ 7

]

2

Circular Area

giuLu.u‘ VIS — &ul&o (W S0 P L] K




APPENDIX D

d%wf)

Chapter 5 - Distributed Forces

.
=1y =%
— _4r L- E-S—]r‘*
Semicircular Y= 9 * [8 O
Area
L:fr_f"i
- 4
rt
L. =1 =7
A e AT
|
—  — _dr = = a 4 4
xr=y=— I:I:———]r
Quarter-Circular 3 O 18 97
Area r
jzﬁ
8
4
3 Ix=%fa—lsinﬂa}
I r )
Area of Circular | _ ¥ =2 rsing PP
Eﬂgectﬂr;‘mﬂr x x 3 a I, 4lix+2sm?0:}
Iz:%r“a
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Chapter 5 - Distributed Forces

Rectangular Area I = @
Jr'lu ’ 3
[
1 T _ th
S A (- _ k=T
I
——x
7 = bh o 4o
5 I = 12 (b=+h=)
LB
T = a+bh £ 12
3
Triangular Area I = bh?
*36
y=r
3 [ - bR’
Sy
Area of Elliptical 7 -7ab® 7 _ (ﬂ - 4_13,53
| Quadrant = 4a x 1" 16 97
-:'l' 3
3 —
| .lr}. = 7a b, I‘r = (E - 4—](135
= _ap 16 - 16 9
bl £ C Y = 3_
— T
b
¥y I. = T3 (o2 + E}E
. I T (a )
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Subparabolic Area , ab?
a1
==
I = a’b
YTos
73
10 a’ | b
L = ab|% —]
: ﬂ(s—*f'm
2ab®
I = —
¥ =3a T
8
3
ITzzfsb
y =236
5 ! 2{15(&2 52]
: 57T
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APPENDIX D L=l L
Circular
Cylindrical — I = %mﬂ - %m!g
Shell o
I.=mr?
I.=1,
= %mr2 + ygml?
Ile'i - IJ'IJ'I
X = 2—1:: = %mr‘Q + %mlg
I, =mr?
I.= (1 —~ %) mr®
I_.= %mr2 + l—lzmlz
" Circular 1 1
Cylinder o L., =gmr* + gml®
I, = %m:"2
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APPENDIX D
Ixx = I}'}'
1 1
i L .-k\ = 1}'1’1}"2 + ﬁmiz
X 2 ")“\:;‘f L.=L,,
: .‘}-‘W Semicylinder ¥ L2+ L2
! v
‘ y1 | I —
Xy *
7 —(1_16
L= (2 9»;:2) mr®
L I = +ma?+ 2
LT 3| o = 12
’i 2 I, = %m{bﬂ +12)
5% _N-—  Rectangular B L
z- G\+\"\ Parallelepiped I.. = ygmia” + b?)
_1 1
N J"1| y I, , =qgmb®+gml*
Y2 1
i I, =gmb*+ )
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- Spherical L 2
z— Shell L = gmr*
z — oG : xx — Cyy ~ tzz T 3
Hemispherical =TI

. Shell 2 ] =] =2

| y I, =1, =3mr

X

Sphere — I_= %mr2
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APPENDIX D

~r —
2

e rf;[
) & H . h _ Sr I_r_r - Ij.j,r - Izz - Emf&
. y emispnere X = g
T T 83
| IJ*}' =L.= ﬁmrg

_ 1
Uniform B I, =ysml
Slender Rod )
I:vm = im‘!z
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=l
]

Quarter— ! IH A T %mrg
Circular Rod _2r
T I =mr?
I = :limaﬂ + %mli
L. I =imp? + L2
Elliptical o w4 12
Cylinder I - ?11’” (@ + b?)
L, =3imb? +imp2
I, = %m;"2 + %mhz
1 1
I =smr?+ smh?
Conical -2k e 4 6
Shell 3 I, =imr

7] -1 1 2
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IL.=1,

_1 1 192
= 4mrﬁ + zmh

__4r _
Half e freer =
Conieal = %mr‘? + %mhz
Shell
7= % L= %m;r‘2
T 1 16
=|=— — | mr?
= (2 91:2)
3 3
IJ,J, —ﬁmrz 1 gmhz
) 3 1
Right _  3h IJ‘IJ‘I ?:l}'rr'l"r2 - Emhz
Circular z= vy 3
Cone I, =55mr®
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APPENDIX D
IH - IJ‘J‘
= gg_gmrz + %mhz
- I.. =1
| . X4Ty ¥
Ea—\— 'y X = % 3 . 1 o
i - Half Cone . 3h = 5gM 5™
r — 4 5
Xy Y1 l I.= ﬁmrﬁ
7 3 1
I, = %m(ag + ¢2)
z=2¢ _1 . 2 2
-y I..=zm@® +b°)
F.TJ: - %m{bz T l_icz}
. I I T = l 2 19 o
Semiellipsoid L, = ima? + )
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v Y

XX

I = %mbz + %m,r:.'2

_1 9 1
IH—Bma +2m02

I = %m{az + b%)

I, =2m®? + %2

_1 9 1o
IH—Em{a +§c}

=] =
I

i)

(o LN = S =

I, = 15m®? + ¢?)
I, = %m[aﬂ +¢?)
I_= ﬁm(ag +b2)

1. = gm®®+c?

xx

I, =%m(a? Fe2)

I.= %m(ag + b?)

y
— Elliptic
\ Paraboloid

e

Rectangular
Tetrahedron
{I. — Half Torus

a? + 4R?

27R

X X,

7 1 p3 5 3
I —Iy—sz + gma

I..=mR?+ %ma?
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