Δ

Semnan University
Faculty of Mechanical Engineering

\author{

* Chapter 1: Introduction to Statics
 * Chapter 2: Force Systems
 Chapter 3: Equilibrium
 - Chapter 4: Structures
 Chapter 5: Distributed Forces
 - Chapter 6: Friction
}
دانشكده ممنـدسى مكانيك - درس استاتيك

2.2 FORCE

Properties of a single force:*Action of one body on another

* Action which tends to cause acceleration
*Vector quantity (Magnitude and Direction)
*Forces may be combined by vector addition

دانشكده مهيندسى مكانيك - درس استاتيك

2.2 FORCE

\square Complete specification of the action of this force must include:

* Magnitude
* Direction

Point of application
\checkmark We must treat it as a fixed vectorExternal and Internal Effects

- External Forces:
\checkmark Applied forces

\checkmark Reactive forces
: External forces lead to creation of internal forces
دانشكده مهندسى مكانيك - درس استاتيك

2.2 FORCE

\square Principle of Transmissibility

* When dealing with the mechanics of a rigid body, we ignore deformations in the body
* The external effects of the exerted force should be same
- So it is not necessary to restrict the action of an applied force to a given point
* For example:
\checkmark Force P may be applied at A or at B or at any other point on its line of action
\checkmark External effects: bearing support at O and roller support at C

دانشكده ممنـدسى مكانيك - درس استاتيك

2.2 FORCE

\square Principle of Transmissibility:

* A force may be applied at any point on its given line of action without altering the resultant effects of the force external to the rigid body on which it acts.
:The force may be treated as a sliding vector:
\checkmark Magnitude
\checkmark Direction
\checkmark Line of action

دانشكده مهيندسى مكانيك - درس استاتيك

2.2 FORCE

Force ClassificationContact or Body forces:
\checkmark A contact force is produced by direct physical contact
\checkmark A body force is generated by virtue of the position of a body within a force field (such as a gravitational)

Cable tension P

دانشكده مهندسى مكانيك - درس استاتيك

2.2 FORCE

Force Classification

* Concentrated or Distributed forces
\checkmark Actually, almost all forces are distributed forces.
\checkmark When the dimensions of the area are very small compared with the other dimensions of the body, we may consider the force to be concentrated

دانشكده مهيندسى مكانيكى - درس استاتيكى

2.2 FORCE

- Action and Reaction

According to Newton's third law, the action of a force is always accompanied by an equal and opposite reaction

دانشكده مهنـدسى مكانيك - درس استاتيك

2.2 FORCE

\square Concurrent Forces

* Their lines of action intersect at that point
:They can be added using the parallelogram law in their common plane

$$
\mathbf{R}=\mathbf{F}_{1}+\mathbf{F}_{2}
$$

دانشكده مهندسى مكانيكى - درس استاتيكى

2.2 FORCE

\square Vector Components

* We often need to replace a force by its vector components in directions which are convenient for a given application

دانشكده مهندسى مكانيكى - درس استاتيكى

2.2 FORCE

\square A Special Case of Vector Addition

* Parallel Forces
\checkmark Finding correct line of action

2.3 Rectangular Components

\square The most common two-dimensional resolution of a force vector: Rectangular Components

$$
\begin{gathered}
\mathbf{F}=\mathbf{F}_{x}+\mathbf{F}_{y} \\
\mathbf{F}=F_{x} \mathbf{i}+F_{y} \mathbf{j} \\
F_{x}=F \cos \theta \quad F=\sqrt{F_{x}^{2}+F_{y}^{2}}=|\mathbf{F}| \\
F_{y}=F \sin \theta \quad \theta=\tan ^{-1} \frac{F_{y}}{F_{x}}
\end{gathered}
$$

2.3 Rectangular Components

\square Determining the Components of a Force

$$
\begin{array}{ll}
F_{x}=F \sin \beta & F_{x}=-F \cos \beta \\
F_{y}=F \cos \beta & F_{y}=-F \sin \beta
\end{array}
$$

$$
\begin{aligned}
& F_{x}=F \sin (\pi-\beta) \\
& F_{y}=-F \cos (\pi-\beta)
\end{aligned}
$$

$F_{x}=F \cos (\beta-\alpha)$
$F_{y}=F \sin (\beta-\alpha)$

2.3 Rectangular Components

\square Finding the sum or resultant R of two forces (which are concurrent)

* Summing each component separately

$$
\mathbf{R}=\mathbf{F}_{1}+\mathbf{F}_{2}=\left(F_{1_{x}} \mathbf{i}+F_{1_{y}} \mathbf{j}\right)+\left(F_{2_{x}} \mathbf{i}+F_{2_{y}} \mathbf{j}\right)
$$

$$
R_{x} \mathbf{i}+R_{y} \mathbf{j}=\left(F_{1_{x}}+F_{2_{x}}\right) \mathbf{i}+\left(F_{1_{y}}+F_{2_{y}}\right) \mathbf{j}
$$

$$
\begin{aligned}
& R_{x}=F_{1_{x}}+F_{2_{x}}=\Sigma F_{x} \\
& R_{y}=F_{1_{y}}+F_{2_{y}}=\Sigma F_{y}
\end{aligned}
$$

Sample Problem 2/1

The forces $\mathbf{F}_{1}, \mathbf{F}_{2}$, and \mathbf{F}_{3}, all of which act on point A of the bracket, are specified in three different ways. Determine the x and y scalar components of each of the three forces.

$$
\begin{aligned}
& F_{1_{x}}=600 \cos 35^{\circ}=491 \mathrm{~N} \\
& F_{1_{y}}=600 \sin 35^{\circ}=344 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& F_{2_{x}}=-500\left(\frac{4}{5}\right)=-400 \mathrm{~N} \\
& F_{2_{y}}=500\left(\frac{3}{5}\right)=300 \mathrm{~N}
\end{aligned}
$$

$$
\alpha=\tan ^{-1}\left[\frac{0.2}{0.4}\right]=26.6^{\circ}
$$

$$
F_{3_{x}}=F_{3} \sin \alpha=800 \sin 26.6^{\circ}=358 \mathrm{~N}
$$

$$
F_{3_{y}}=-F_{3} \cos \alpha=-800 \cos 26.6^{\circ}=-716 \mathrm{~N}
$$

$$
\begin{aligned}
\mathbf{F}_{3}=F_{3} \mathbf{n}_{A B}=F_{3} \frac{\overrightarrow{A B}}{\overrightarrow{A B}} & =800\left[\frac{0.2 \mathbf{i}-0.4 \mathbf{j}}{\sqrt{(0.2)^{2}+(-0.4)^{2}}}\right] \\
& =800[0.447 \mathbf{i}-0.894 \mathbf{j}] \\
& =358 \mathbf{i}-716 \mathbf{j} \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& F_{3_{x}}=358 \mathrm{~N} \\
& F_{3 y}=-716 \mathrm{~N}
\end{aligned}
$$

Sample Problem 2/4

Forces \mathbf{F}_{1} and \mathbf{F}_{2} act on the bracket as shown. Determine the projection F_{b} of their resultant \mathbf{R} onto the b-axis.

$$
\begin{aligned}
& R_{1}=100 \mathrm{~N}=(80)^{2}+(100)^{2}-2(80)(100) \cos 130^{\circ} \quad R=163.4 \mathrm{~N} \\
& F_{b}=80+100 \cos 50^{\circ}=144.3 \mathrm{~N}
\end{aligned}
$$

دانشكده مهندسى مكانيكى - درس استاتيكى

2.4 Moments

\square A force can also tend to rotate a body about an axis
\square Moment is also referred to as torque
\square The magnitude of this tendency depends on:

* Magnitude F of the force
$\%$ Effective length d of the wrench handle

دانشكده مهندسى مكانيك - درس استاتيك

2.5 Moments

\square Moment about a Point

$$
M=F d
$$

* Plus sign for counterclockwise moments
- Minus sign for clockwise moments
: Sign consistency within a given problem is essential.

دانشكده مهيندسى مكانيكى - درس استاتيكى

2.5 Moments

- The Cross Product

$$
\mathbf{M}=\mathbf{r} \times \mathbf{F}
$$

*The moment of \mathbf{F} about point A
$\% \mathbf{r}$ is a position vector which runs from the moment reference point A to any point on the line of action of \mathbf{F}
\% We must maintain the sequence $\mathbf{r} \times \mathbf{F}$, because the sequence $\mathbf{F} \times \mathbf{r}$ would produce a vector with a sense opposite to that of the correct moment.

$$
M=F r \sin \alpha=F d
$$

دانشعده مهنـدسى معانيع - درس استاتيع

2.5 Moments

\square Varignon's Theorem
The moment of a force about any point is equal to the sum of the moments of the components of the force about the same point.
$\mathbf{M}_{O}=\mathbf{r} \times \mathbf{R}$
$\mathbf{R}=\mathbf{P}+\mathbf{Q}$
$\longrightarrow \mathbf{r} \times \mathbf{R}=\mathbf{r} \times(\mathbf{P}+\mathbf{Q})$
$\longrightarrow \quad \mathbf{M}_{O}=\mathbf{r} \times \mathbf{R}=\mathbf{r} \times \mathbf{P}+\mathbf{r} \times \mathbf{Q}$

$\longrightarrow M_{O}=R d=-p P+q Q$
دانشكده مهنـدسى مكانيک - درس استاتيك

Sample Problem 2/5

Calculate the magnitude of the moment about the base point O of the $600-\mathrm{N}$ force in five different ways.

Solution. (I)

$$
\begin{aligned}
& d=4 \cos 40^{\circ}+2 \sin 40^{\circ}=4.35 \mathrm{~m} \\
& M=F d \\
& M_{O}=600(4.35)=2610 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Solution. (II) $F_{1}=600 \cos 40^{\circ}=460 \mathrm{~N}, \quad F_{2}=600 \sin 40^{\circ}=386 \mathrm{~N}$

$$
M_{O}=460(4)+386(2)=2610 \mathrm{~N} \cdot \mathrm{~m}
$$

Solution. (III)

$$
\begin{aligned}
& d_{1}=4+2 \tan 40^{\circ}=5.68 \mathrm{~m} \\
& M_{O}=460(5.68)=2610 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Solution. (IV)

$$
\begin{aligned}
& d_{2}=2+4 \cot 40^{\circ}=6.77 \mathrm{~m} \\
& M_{O}=386(6.77)=2610 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Solution. (V)

$$
\begin{aligned}
\mathbf{M}_{O} & =\mathbf{r} \times \mathbf{F}=(2 \mathbf{i}+4 \mathbf{j}) \times 600\left(\mathbf{i} \cos 40^{\circ}-\mathbf{j} \sin 40^{\circ}\right) \\
& =-2610 \mathbf{k} \mathrm{~N} \cdot \mathrm{~m} \\
M_{O} & =2610 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

2.5 COUPLE

\square The moment produced by two equal, opposite, and noncollinear forces is called a couple.
\square The forces only effect is to produce a tendency of rotation

$$
M=F(a+d)-F a
$$

$$
\longrightarrow \quad M=F d
$$

Counterclockwise couple

Clockwise couple
دانشكده مهنـدسى مكانيك - درس استاتيك

2.5 COUPLE

\square Vector Algebra Method

$$
\begin{aligned}
& \mathbf{M}=\mathbf{r}_{A} \times \mathbf{F}+\mathbf{r}_{B} \times(-\mathbf{F})=\left(\mathbf{r}_{A}-\mathbf{r}_{B}\right) \times \mathbf{F} \\
& \longrightarrow \mathbf{M}=\mathbf{r} \times \mathbf{F}
\end{aligned}
$$

$\%$ The moment expression contains no reference to the moment center O and, therefore, is the same for all moment centers. Thus, we may represent \mathbf{M} by a free vector.

دانشكده مهندسى مكانيكى - درس استاتيك

2.5 COUPLE

\square Equivalent Couples

Changing the values of F and d does not change a given couple as long as the product $F d$ remains the same.

* Likewise, a couple is not affected if the forces act in a different but parallel plane.

دانشكده ممنـدسى مكانيك - درس استاتيك

2.5 COUPLE

\square Force-Couple Systems

*The effect of a force acting on a body:
\checkmark Push or pull the body in the direction of the force
\checkmark Rotate the body about any fixed axis which does not intersect the line of the force

* By reversing this process, we can combine a given couple and a force which lies in the plane of the couple (normal to the couple vector) to produce a single, equivalent force.
دانشكده مهنـدسى مكانيك - درس استاتيك

Sample Problem 2/7

The rigid structural member is subjected to a couple consisting of the two $100-\mathrm{N}$ forces. Replace this couple by an equivalent couple consisting of the two forces \mathbf{P} and $-\mathbf{P}$, each of which has a magnitude of 400 N . Determine the proper angle θ.

$$
\begin{aligned}
{[M} & =F d] \\
M & =400(0.040) \cos \theta \\
10 & =(400)(0.040) \cos \theta \\
\theta & =\cos ^{-1} \frac{10}{16}=51.3^{\circ}
\end{aligned}
$$

$$
M=100(0.1)=10 \mathrm{~N} \cdot \mathrm{~m}
$$

Sample Problem 2/8

Replace the horizontal 80 -lb force acting on the lever by an equivalent system consisting of a force at O and a couple.

$$
[M=F d] \quad M=80\left(9 \sin 60^{\circ}\right)=624 \mathrm{lb}-\mathrm{in} .
$$

دانشكده مهندسى مكانيك - درس استاتيك

2.6 RESULTANT

\square The resultant of a system of forces:
The simplest force combination which can replace the original forces without altering the external effect on the rigid body to which the forces are applied
\square Equilibrium of a body:
The condition in which the resultant of all forces acting on the body is zero.

دانشكده مهـندسى مكانيك - درس استاتيكى

2.6 Resultant

\square The resultant of a system of forces

$$
\begin{gathered}
\mathbf{R}=\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3}+\cdots=\Sigma \mathbf{F} \\
R_{x}=\Sigma F_{x} \quad R_{y}=\Sigma F_{y} \quad R=\sqrt{\left(\Sigma F_{x}\right)^{2}+\left(\Sigma F_{y}\right)^{2}} \\
\theta=\tan ^{-1} \frac{R_{y}}{R_{x}}=\tan ^{-1} \frac{\Sigma F_{y}}{\Sigma F_{x}}
\end{gathered}
$$

2.6 RESULTANT

\square Algebraic Method

2.6 Resultant

Principle of Moments$$
\begin{gathered}
\mathbf{R}=\Sigma \mathbf{F} \\
M_{O}=\Sigma M=\Sigma(F d) \\
R d=M_{O}
\end{gathered}
$$

*This extends Varignon's theorem to the case of nonconcurrent force systems.

* The three forces have a zero resultant force but have a resultant clockwise couple ($\mathrm{M}=\mathrm{F} 3 \mathrm{~d}$)

دانشكده مهندسى مكانيك - درس استاتيك

Sample Problem 2/9

Determine the resultant of the four forces and one couple which act on the plate shown.

Solution. Point O is selected as a convenient reference point

$$
\left[R d=\left|M_{O}\right|\right] \quad 148.3 d=237 \quad d=1.600 \mathrm{~m}
$$

$$
\begin{aligned}
& {\left[R_{x}=\Sigma F_{x}\right] \quad R_{x}=40+80 \cos 30^{\circ}-60 \cos 45^{\circ}=66.9 \mathrm{~N}} \\
& {\left[R_{y}=\Sigma F_{y}\right]} \\
& R_{y}=50+80 \sin 30^{\circ}+60 \cos 45^{\circ}=132.4 \mathrm{~N} \\
& {\left[R=\sqrt{R_{x}{ }^{2}+R_{y}{ }^{2}}\right] \quad R=\sqrt{(66.9)^{2}+(132.4)^{2}}=148.3 \mathrm{~N}} \\
& {\left[\theta=\left.\tan \right|^{-1} \frac{R_{y}}{R_{x}}\right] \quad \theta=\tan ^{-1} \frac{132.4}{66.9}=63.2^{\circ}} \\
& {\left[M_{O}=\Sigma(F d)\right] \quad M_{O}=140-50(5)+60 \cos 45^{\circ}(4)-60 \sin 45^{\circ}(7)} \\
& =-237 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

$R_{y} b=\left|M_{O}\right| \quad$ and $\quad b=\frac{237}{132.4}=1.792 \mathrm{~m}$

$$
\mathbf{r} \times \mathbf{R}=\mathbf{M}_{O}
$$

$$
\longrightarrow(x \mathbf{i}+y \mathbf{j}) \times(66.9 \mathbf{i}+132.4 \mathbf{j})=-237 \mathbf{k}
$$

$$
(132.4 x-66.9 y) \mathbf{k}=-237 \mathbf{k}
$$

$$
132.4 x-66.9 y=-237
$$

\longrightarrow By setting $y=0$, we obtain $x=-1.792 \mathrm{~m}$

2.7 3D Force Systems: Rectangular Components

\square It is often necessary to resolve a force into its three mutually perpendicular components

$$
\begin{array}{ll}
F_{x}=F \cos \theta_{x} & F=\sqrt{F_{x}{ }^{2}+F_{y}{ }^{2}+F_{z}{ }^{2}} \\
F_{y}=F \cos \theta_{y} & \mathbf{F}=F_{x} \mathbf{i}+F_{y} \mathbf{j}+F_{z} \mathbf{k} \\
F_{z}=F \cos \theta_{z} & \mathbf{F}=F\left(\mathbf{i} \cos \theta_{x}+\mathbf{j} \cos \theta_{y}+\mathbf{k} \cos \theta_{z}\right) \\
\hline
\end{array}
$$

$$
\mathbf{F}=F(l \mathbf{i}+m \mathbf{j}+n \mathbf{k})
$$

$$
\mathbf{F}=F \mathbf{n}_{F}
$$

2.7 3D Force Systems: Rectangular Components

- Direction of a force:
(a) Specification by two points on the line of action of the force.

$$
\mathbf{F}=F \mathbf{n}_{F}=F \frac{\stackrel{\rightharpoonup}{A B}}{\overrightarrow{A B}}=F \frac{\left(x_{2}-x_{1}\right) \mathbf{i}+\left(y_{2}-y_{1}\right) \mathbf{j}+\left(z_{2}-z_{1}\right) \mathbf{k}}{\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}}
$$

2.7 3D Force Systems: Rectangular Components

\square Direction of a force:

* (b) Specification by two angles which orient the line of action of the force.

$$
\begin{aligned}
F_{x y} & =F \cos \phi \\
F_{z} & =F \sin \phi
\end{aligned}
$$

$$
\longrightarrow \quad \begin{aligned}
& F_{x}=F_{x y} \cos \theta=F \cos \phi \cos \theta \\
& F_{y}=F_{x y} \sin \theta=F \cos \phi \sin \theta
\end{aligned}
$$

دانشكده مهندسى مكانيك - درس استاتيك

2.7 3D Force Systems: Rectangular Components

\square Dot Product

Expressing the rectangular components of a force \mathbf{F} (or any other vector) with the aid of the vector operation known as the dot or scalar product.

$$
\mathbf{P} \cdot \mathbf{Q}=P Q \cos \alpha
$$

$$
\begin{aligned}
& \mathbf{i} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{j}=\mathbf{k} \cdot \mathbf{k}=1 \\
& \mathbf{i} \cdot \mathbf{j}=\mathbf{j} \cdot \mathbf{i}=\mathbf{i} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{j}=0
\end{aligned}
$$

$$
\begin{aligned}
F_{n}=\mathbf{F} \cdot \mathbf{n} & =F(l \mathbf{i}+m \mathbf{j}+n \mathbf{k}) \cdot(\alpha \mathbf{i}+\beta \mathbf{j}+\gamma \mathbf{k}) \\
& =F(l \alpha+m \beta+n \gamma)
\end{aligned}
$$

دانشكده مهنـدسى مكانيك - درس استاتيك

2.7 3D Force Systems: Rectangular Components

- Dot Product

$$
\mathbf{n}=\alpha \mathbf{i}+\beta \mathbf{j}+\gamma \mathbf{k}
$$

$\longrightarrow F_{n}=\mathbf{F} \cdot \mathbf{n}=F(l \mathbf{i}+m \mathbf{j}+n \mathbf{k}) \cdot(\alpha \mathbf{i}+\beta \mathbf{j}+\gamma \mathbf{k})$

$$
=F(l \alpha+m \beta+n \gamma)
$$

2.7 3D Force Systems: Rectangular Components

\square Angle between Two Vectors

$$
\begin{aligned}
& \theta=\cos ^{-1} \frac{\mathbf{P} \cdot \mathbf{Q}}{P Q} \\
& \theta=\cos ^{-1} \frac{\mathbf{F} \cdot \mathbf{n}}{F}
\end{aligned}
$$

Sample Problem 2/10

A force \mathbf{F} with a magnitude of 100 N is applied at the origin O of the axes $x-y-z$ as shown. The line of action of \mathbf{F} passes through a point A whose coordinates are $3 \mathrm{~m}, 4 \mathrm{~m}$, and 5 m . Determine (a) the x, y, and z scalar components of \mathbf{F}, (b) the projection $F_{x y}$ of \mathbf{F} on the $x-y$ plane, and (c) the projection $F_{O B}$ of \mathbf{F} along the line $O B$.

$$
\begin{aligned}
\mathbf{F} & =F \mathbf{n}_{O A}=F \frac{\overrightarrow{O A}}{\overrightarrow{O A}}=100\left[\frac{3 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k}}{\sqrt{3^{2}+4^{2}+5^{2}}}\right] \\
& =100[0.424 \mathbf{i}+0.566 \mathbf{j}+0.707 \mathbf{k}] \\
& =42.4 \mathbf{i}+56.6 \mathbf{j}+70.7 \mathbf{k} \mathrm{~N}
\end{aligned}
$$

$$
\longrightarrow \quad F_{x}=42.4 \mathrm{~N} \quad F_{y}=56.6 \mathrm{~N} \quad F_{z}=70.7 \mathrm{~N}
$$

$$
\cos \theta_{x y}=\frac{\sqrt{3^{2}+4^{2}}}{\sqrt{3^{2}+4^{2}+5^{2}}}=0.707
$$

$$
\longrightarrow F_{x y}=F \cos \theta_{x y}=100(0.707)=70.7 \mathrm{~N}
$$

$$
\mathbf{n}_{O B}=\frac{\overrightarrow{O B}}{\overline{O B}}=\frac{6 \mathbf{i}+6 \mathbf{j}+2 \mathbf{k}}{\sqrt{6^{2}+6^{2}+2^{2}}}=0.688 \mathbf{i}+0.688 \mathbf{j}+0.229 \mathbf{k}
$$

$$
F_{O B}=\mathbf{F} \cdot \mathbf{n}_{O B}=(42.4 \mathbf{i}+56.6 \mathbf{j}+70.7 \mathbf{k}) \cdot(0.688 \mathbf{i}+0.688 \mathbf{j}+0.229 \mathbf{k})
$$

$$
=(42.4)(0.688)+(56.6)(0.688)+(70.7)(0.229)
$$

$$
=84.4 \mathrm{~N}
$$

$$
\begin{aligned}
\longrightarrow \mathbf{F}_{O B} & =\mathbf{F} \cdot \mathbf{n}_{O B} \mathbf{n}_{O B} \\
& =84.4(0.688 \mathbf{i}+0.688 \mathbf{j}+0.229 \mathbf{k}) \\
& =58.1 \mathbf{i}+58.1 \mathbf{j}+19.35 \mathbf{k} \mathrm{~N}
\end{aligned}
$$

دانشكده مهندسى مكانيك - درس استاتيكـ

2.8 3D Force Systems: Moments and Couple

- Moments in Three Dimensions

$$
\mathbf{M}_{O}=\mathbf{r} \times \mathbf{F}
$$

دانشكده مهندسى مكانيك - درس استاتيك

2.8 3D Force Systems: Moments and Couple

\square Evaluating the Cross Product

$$
\mathbf{M}_{O}=\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
$$

$$
\mathbf{M}_{O}=\left(r_{y} F_{z}-r_{z} F_{y}\right) \mathbf{i}+\left(r_{z} F_{x}-r_{x} F_{z}\right) \mathbf{j}+\left(r_{x} F_{y}-r_{y} F_{x}\right) \mathbf{k}
$$

$$
M_{x}=r_{y} F_{z}-r_{z} F_{y} \quad M_{y}=r_{z} F_{x}-r_{x} F_{z} \quad M_{z}=r_{x} F_{y}-r_{y} F_{x}
$$

2.8 3D Force Systems: Moments and Couple

\square Moment about an Arbitrary Axis

$$
\mathbf{M}_{\lambda}=(\mathbf{r} \times \mathbf{F} \cdot \mathbf{n}) \mathbf{n}
$$

$$
\left|\mathbf{M}_{\lambda}\right|=M_{\lambda}=\left|\begin{array}{lll}
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z} \\
\alpha & \beta & \gamma
\end{array}\right|
$$

2.8 3D Force Systems: Moments and Couple

\square Varignon's Theorem in Three Dimensions:
For a system of concurrent forces $\mathbf{F}_{1}, \mathbf{F}_{2}, \mathbf{F}_{3}, \ldots$ The sum of the moments about O

$$
\begin{aligned}
\mathbf{r} \times \mathbf{F}_{1}+\mathbf{r} \times \mathbf{F}_{2}+\mathbf{r} \times \mathbf{F}_{3}+\cdots & =\mathbf{r} \times\left(\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3}+\cdots\right) \\
& =\mathbf{r} \times \Sigma \mathbf{F}
\end{aligned}
$$

$$
\longrightarrow \mathbf{M}_{O}=\Sigma(\mathbf{r} \times \mathbf{F})=\mathbf{r} \times \mathbf{R}
$$

دانشكده مهيندسى مكانيك - درس استاتيك

2.8 3D Force Systems: Moments and Couple

\square Couples in Three Dimensions:

$$
\mathbf{M}=\mathbf{r}_{A} \times \mathbf{F}+\mathbf{r}_{B} \times(-\mathbf{F})=\left(\mathbf{r}_{A}-\mathbf{r}_{B}\right) \times \mathbf{F}
$$

$$
\longrightarrow \mathbf{M}=\mathbf{r} \times \mathbf{F}
$$

*The moment of a couple is a free vector.

* The moment of a force about a point is a sliding vector.

2.8 3D Force Systems: Moments and Couple

Couple vectors obey all of the rules which govern vector quantities.

دانشكده مهيندسى مكانيكى - درس استاتيكى

Sample Problem 2/11

Determine the moment of force \mathbf{F} about point $O(a)$ by inspection and (b) by the formal cross-product definition $\mathbf{M}_{O}=\mathbf{r} \times \mathbf{F}$.

$$
\mathbf{M}_{O}=-c F \mathbf{i}+a F \mathbf{k}=F(-c \mathbf{i}+a \mathbf{k})
$$

$$
\begin{aligned}
\mathbf{M}_{O}=\mathbf{r} \times \mathbf{F}=(a \mathbf{i}+c \mathbf{k}) \times F \mathbf{j} & =a F \mathbf{k}-c F \mathbf{i} \\
& =F(-c \mathbf{i}+a \mathbf{k})
\end{aligned}
$$

Sample Problem 2/12

The turnbuckle is tightened until the tension in cable $A B$ is 2.4 kN . Determine the moment about point O of the cable force acting on point A and the magnitude of this moment.

$$
\begin{aligned}
\mathbf{T} & =T \mathbf{n}_{A B}=2.4\left[\frac{0.8 \mathbf{i}+1.5 \mathbf{j}-2 \mathbf{k}}{\sqrt{0.8^{2}+1.5^{2}+2^{2}}}\right] \\
& =0.731 \mathbf{i}+1.371 \mathbf{j}-1.829 \mathbf{k} \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{M}_{O} & =\mathbf{r}_{O A} \times \mathbf{T}=(1.6 \mathbf{i}+2 \mathbf{k}) \times(0.731 \mathbf{i}+1.371 \mathbf{j}-1.829 \mathbf{k}) \\
& =-2.74 \mathbf{i}+4.39 \mathbf{j}+2.19 \mathbf{k} \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

$\longrightarrow M_{O}=\sqrt{2.74^{2}+4.39^{2}+2.19^{2}}=5.62 \mathrm{kN} \cdot \mathrm{m}$

دانشكده ممنـدسى مكانيك - درس استاتيك

Sample Problem 2/14

Determine the magnitude and direction of the couple \mathbf{M} which will replace the two given couples and still produce the same external effect on the block. Specify the two forces \mathbf{F} and $-\mathbf{F}$, applied in the two faces of the block parallel to the $y-z$ plane, which may replace the four given forces. The $30-\mathrm{N}$ forces act parallel to the $y-z$ plane.
$M_{1}=30(0.06)=1.80 \mathrm{~N} \cdot \mathrm{~m}$.
$M_{y}=1.80 \sin 60^{\circ}=1.559 \mathrm{~N} \cdot \mathrm{~m}$

$$
M_{z}=-2.50+1.80 \cos 60^{\circ}=-1.600 \mathrm{~N} \cdot \mathrm{~m}
$$

$\longrightarrow M=\sqrt{(1.559)^{2}+(-1.600)^{2}}=2.23 \mathrm{~N} \cdot \mathrm{~m}$
$\longrightarrow \theta=\tan ^{-1} \frac{1.559}{1.600}=\tan ^{-1} 0.974=44.3^{\circ}$

$$
[M=F d] \quad \longrightarrow \quad F=\frac{2.23}{0.10}=22.3 \mathrm{~N}
$$

2.9 3D Force Systems: Resultant

$$
\begin{gathered}
\mathbf{R}=\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3}+\cdots=\Sigma \mathbf{F} \\
\mathbf{M}=\mathbf{M}_{1}+\mathbf{M}_{2}+\mathbf{M}_{3}+\cdots=\Sigma(\mathbf{r} \times \mathbf{F})
\end{gathered}
$$

$$
\longrightarrow \begin{gathered}
R_{x}=\Sigma F_{x} \quad R_{y}=\Sigma F_{y} \quad R_{z}=\Sigma F_{z} \\
R=\sqrt{\left(\Sigma F_{x}\right)^{2}+\left(\Sigma F_{y}\right)^{2}+\left(\Sigma F_{z}\right)^{2}} \\
\mathbf{M}_{x}=\Sigma(\mathbf{r} \times \mathbf{F})_{x} \quad \mathbf{M}_{y}=\Sigma(\mathbf{r} \times \mathbf{F})_{y} \quad \mathbf{M}_{z}=\Sigma(\mathbf{r} \times \mathbf{F})_{z} \\
M=\sqrt{M_{x}^{2}+M_{y}^{2}+M_{z}^{2}}
\end{gathered}
$$

Sample Problem 2/16

Determine the resultant of the force and couple system which acts on the rectangular solid.

$$
\mathbf{R}=\Sigma \mathbf{F}=(80-80) \mathbf{i}+(100-100) \mathbf{j}+(50-50) \mathbf{k}=\mathbf{0} \mathrm{lb}
$$

$\mathbf{M}_{O}=[50(16)-700] \mathbf{i}+[80(12)-960] \mathbf{j}+[100(10)-1000] \mathbf{k}$ lb-in. $=100 \mathrm{ilb}-\mathrm{in}$.

Sample Problem 2/17

Determine the resultant of the system of parallel forces which act on the plate. Solve with a vector approach.

$$
\begin{aligned}
\mathbf{R} & =\Sigma \mathbf{F}=(200+500-300-50) \mathbf{j}=350 \mathbf{j} \mathbf{N} \\
\mathbf{M}_{O} & =[50(0.35)-300(0.35)] \mathbf{i}+[-50(0.50)-200(0.50)] \mathbf{k} \\
& =-87.5 \mathbf{i}-125 \mathbf{k} \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{r} \times \mathbf{R} & =\mathbf{M}_{O} \\
(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) \times 350 \mathbf{j} & =-87.5 \mathbf{i}-125 \mathbf{k} \\
350 x \mathbf{k}-350 z \mathbf{i} & =-87.5 \mathbf{i}-125 \mathbf{k}
\end{aligned}
$$

$x=-0.357 \mathrm{~m}$ and $z=0.250 \mathrm{~m}$

دانشكده ممنـدسى مكانيك - درس استاتيك

