

Faculty of Mechanical Engineering

دانشکده مهندسی مکانیک

درس رباتیک پیشرفته

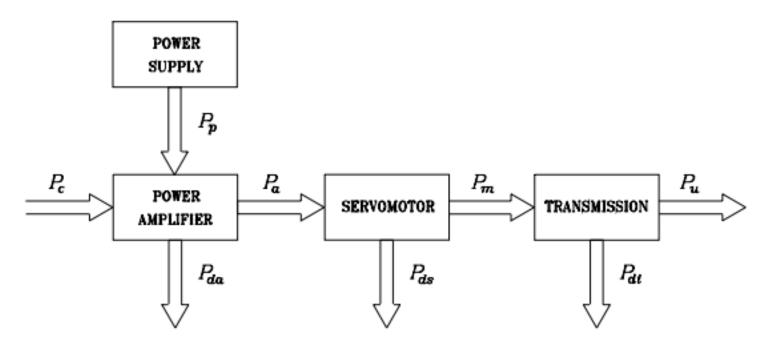
ADVANCED ROBOTICS

Chapter 5 – Actuators and Sensors
Class Lecture

CONTENTS:

- * Chapter 1: Introduction
- Chapter 2: Kinematics
- * Chapter 3: Differential Kinematics and Statics
- * Chapter 4: Trajectory Planning
- Chapter 5: Actuators and Sensors
 - * Chapter 6: Control Architecture

5. ACTUATORS AND SENSORS


- Actuating System
 - Power supply
 - Power amplifier
 - Servomotor
 - ✓ Electric Servomotors
 - ✓ Hydraulic Servomotors
 - Transmission

Sensors

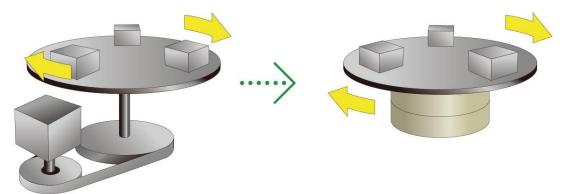
- Proprioceptive Sensors (internal state of the manipulator encoders, resolvers& tachometers)
- Exteroceptive Sensors (force sensors, distance sensors & vision sensors)

Components of a joint actuating system

Power can always be expressed as the product of a flow and a force quantity.

- □ 5.1.1 Transmissions
 - Manipulator joints need low speed, high torque
 - ❖ Servomotors give high speed, low torque → not ideal alone
 - Transmissions convert motor output in both magnitude (speed/torque) and type (rotational to translational)
 - Some power is lost to friction
 - * Gear choice depends on motion type, power, and motor placement
 - * Transmissions improve performance and reduce load
 - Mounting motors at the base reduces weight and boosts efficiency

- □ 5.1.1 Transmissions
 - * Transmissions used for industrial robots:
 - ✓ Spur Gears
 - ✓ Lead Screws
 - ✓ Timing Belts & Chains

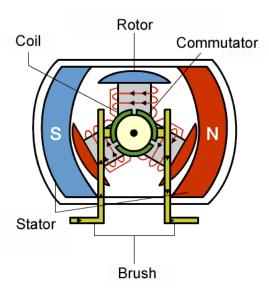


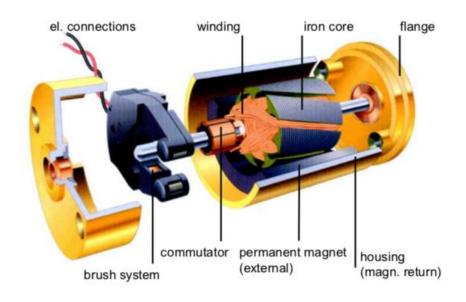
- □ 5.1.1 Transmissions
 - * Transmissions used for industrial robots:
 - ✓ Spur Gears:
 - Modify motor rotation (axis or position).
 - Built with thick teeth and short shafts for strength.
 - ✓ Lead Screws:
 - Convert rotation to translation (for prismatic joints).
 - Ball screws used to reduce friction, increase stiffness, and minimize backlash.
 - ✓ Timing Belts & Chains:
 - Allow motor placement away from joint.
 - Belts: Good for high speed, low force (can stretch under stress)
 - Chains: Suitable for low speed due to heavy mass and potential vibration

- □ 5.1.1 Transmissions
 - Direct Drive:
 - ✓ Sometimes, motors can be connected directly to joints without a transmission (direct drive)
 - ✓ This setup eliminates issues like transmission elasticity and backlash
 - ✓ However, it requires more advanced control algorithms

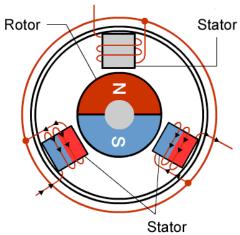
Servo motor + Reduction gear Direct Drive Motor

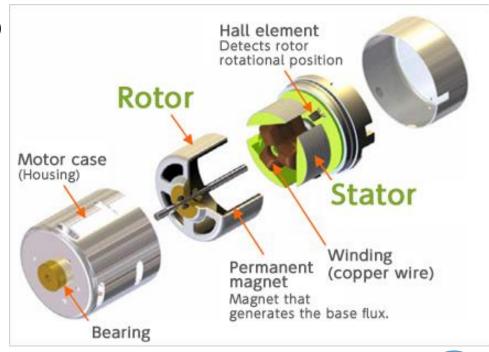
- □ 5.1.2 Servomotors
 - Motors which allow the realization of a desired motion
 - * Based on the type of input power
 - ✓ Pneumatic motors
 - ✓ Hydraulic motors
 - ✓ Electric motors





- □ 5.1.2 Servomotors
 - ❖ Powers ranging from about 10W to about 10 kW
 - * Requirements:
 - ✓ Good trajectory tracking and positioning accuracy
 - ✓ Low inertia and high power-to-weight ratio
 - ✓ Possibility of overload and delivery of impulse torques
 - ✓ Capability to develop high accelerations
 - ✓ Wide velocity range (from 1 to 1000 revolutes/min)
 - ✓ High positioning accuracy (at least 1/1000 of a circle)
 - ✓ Low torque ripple so as to guarantee continuous rotation even at low speed

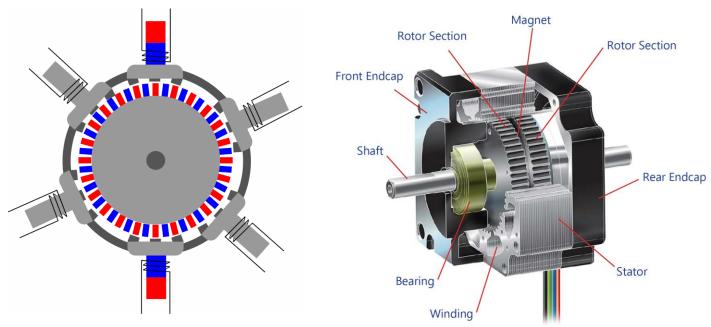

- 5.1.2 Servomotors
 - * The most employed motors in robotics applications are electric servomotors
 - ✓ Permanent-Magnet Direct-Current (DC) servomotors
 - A stator coil
 - An armature (rotor)
 - A commutator



- □ 5.1.2 Servomotors
 - * The most employed motors in robotics applications are electric servomotors
 - ✓ Brushless DC servomotors
 - A rotating coil (rotor)
 - A stationary armature (stator)
 - A static commutator

5.1 JOINT ACTUATING SYSTEM

- □ 5.1.2 Servomotors
 - Brushed vs. Brushless Motor

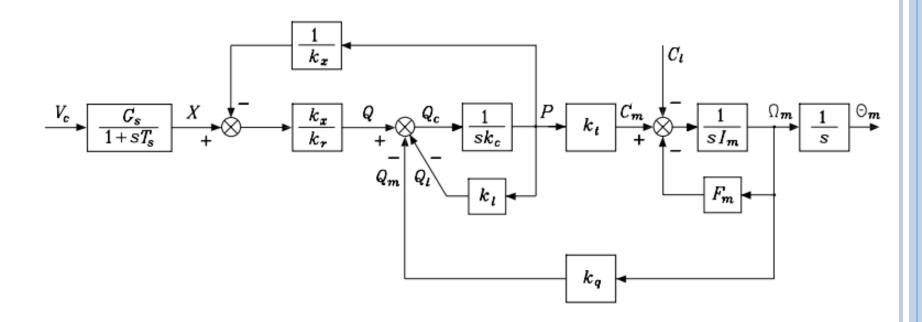

Feature	Brushed Motor	Brushless Motor
Lifetime	Shorter	Longer
Maintenance Requirements	Regular brush replacement	Minimal
Speed & Acceleration	Lower	Higher
Efficiency Lower	Lower	Higher
Noise & Vibration Levels	Higher	Lower
Torque	Moderate	Higher
Weight & Size	Lighter	Heavier
Cost	Lower	Higher

- □ 5.1.2 Servomotors
 - Brushed vs. Brushless Motor
 - ✓ DC motors use rotor position sensors and electronic control to maintain orthogonal field alignment for rotation
 - ✓ Permanent-magnet DC motors use mechanical commutation via brushes and commutator plates to achieve the same effect
 - ✓ Functional similarity:
 - Brush/commutator in PMDC = Sensor/controller in brushless DC
 - * Brushless DC motors offer superior performance but come at higher cost.

- □ 5.1.2 Servomotors
 - Stepper Motors
 - ✓ Controlled by excitation sequences; no position feedback needed
 - ✓ Sensitive to payload changes; can cause vibrations
 - ✓ Best suited for low-cost, low-dynamic applications like micromanipulators

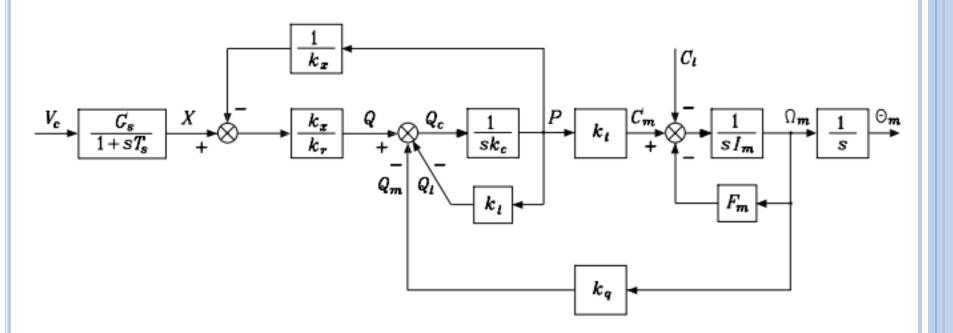
- □ 5.1.3 Power Amplifiers
 - Modulates power from the primary supply based on the control signal
 - Delivers power to actuators in forms suitable for executing desired motion
 - Inputs:
 - ✓ Power from the source (Pp)
 - ✓ Power from the control signal (Pc)
 - Outputs:
 - ✓ Useful actuator power (Pa)
 - ✓ Dissipated power losses (Pda)

- □ 5.1.4 Power Supply
 - * Supplies primary power to the amplifier for operating the actuating system
 - Electric Servomotors
 - ✓ Transformer: Adjusts voltage level
 - ✓ Uncontrolled bridge rectifier: Converts AC from the grid into DC
 - ✓ Provides suitable direct voltage to feed the amplifier
 - Hydraulic Servomotors
 - ✓ Uses gear or piston pump to compress fluid
 - ✓ Pump driven by a primary motor (usually a 3-phase nonsynchronous motor)
 - ✓ A hydraulic reservoir stores energy and reduces pressure oscillations (analogous to a filter capacitor in electric systems)

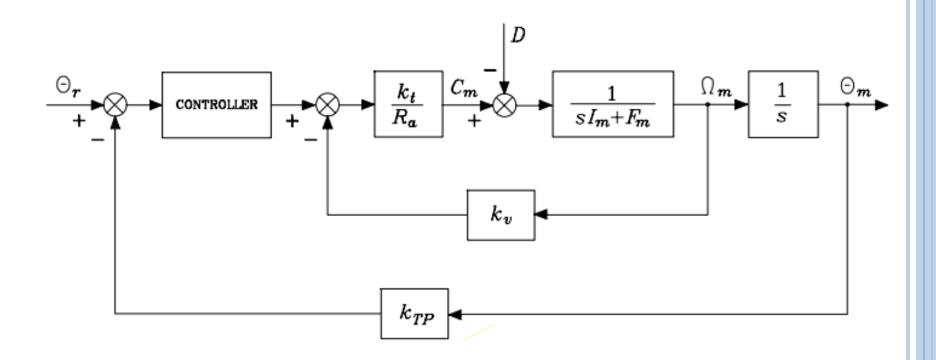


□ Servomotor Drive:

- * A system that controls the motion of a servomotor by regulating power input based on feedback
- * Enable precise positioning, speed, and torque control in automated mechanisms
- Electric and hydraulic drives used for actuating robot joints
 - * Begins with mathematical models that describe their dynamic behavior
 - Block diagrams are derived to highlight:
 - ✓ Control system characteristics
 - ✓ Impact of mechanical transmission on system performance



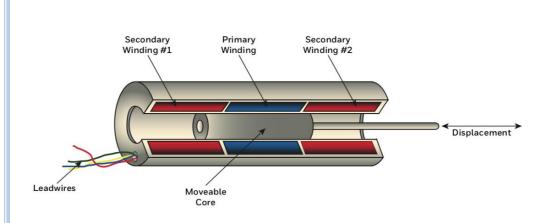
□ Block scheme of an electric drive

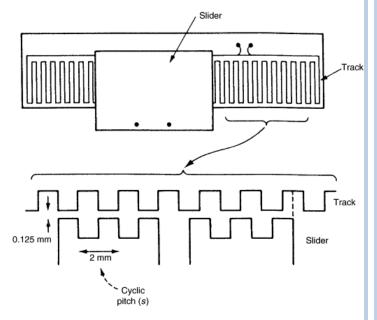


□ Block scheme of a hydraulic drive

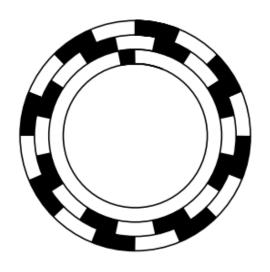
□ General block scheme of electric drive control

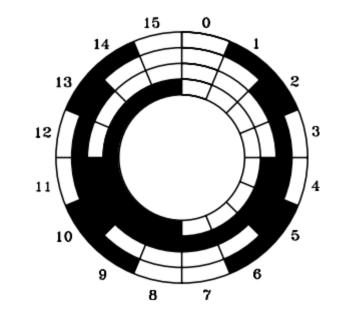
- Sensors
 - Proprioceptive sensors that measure the internal state of the manipulator
 - ✓ Joint positions
 - ✓ Joint velocities
 - ✓ Joint torques
 - * Exteroceptive sensors that provide the robot with knowledge of the surrounding environment
 - ✓ Force sensors
 - ✓ Tactile sensors
 - ✓ Proximity sensors
 - ✓ Range sensors
 - ✓ Vision sensors
 - ✓ Sound, humidity, smoke, pressure, temperature sensors, ...




- 5.3.1 Position Transducers
 - * Position transducers generate an electrical signal proportional to a system's linear or angular displacement from a reference point
 - Widely used in machine tool control, so they cover a broad measurement range
 - * In **robotics**, angular transducers are commonly used, even for prismatic joints, because servomotors are typically rotary.

- 5.3.1 Position Transducers
 - Linear displacement transducers
 - ✓ Potentiometers
 - ✓ LVDTs (Linear Variable Differential Transformers)
 - ✓ Inductosyns


- □ 5.3.1 Position Transducers
 - Angular displacement transducers
 - ✓ Potentiometers
 - ✓ Encoders
 - ✓ Resolvers
 - ✓ Synchros



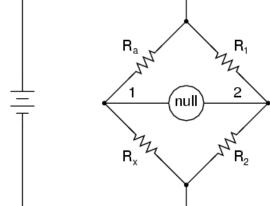
- □ 5.3.1 Position Transducers
 - Encoders
 - ✓ Absolute (Gray-code)
 - ✓ Incremental

#	Code	#	Code
0	0000	8	1100
1	0001	9	1101
2	0011	10	1111
3	0010	11	1110
4	0110	12	1010
5	0111	13	1011
6	0101	14	1001
7	0100	15	1000

- 5.3.2 Velocity Transducers
 - * Tachometers
 - ✓ Although velocity can be estimated from position data, direct measurement is preferred for accuracy
 - ✓ Devices for direct velocity measurement are called tachometers
 - ✓ Most tachometers operate on electric machine principles
 - ✓ Two main types:
 - DC Tachometers
 - AC Tachometers

- 5.3.2 Velocity Transducers
 - DC Tachometer
 - ✓ Most commonly used type
 - ✓ Functions as a small DC generator with a permanent magnet field
 - ✓ Output voltage is proportional to angular speed
 - ✓ Design aims to ensure:
 - Linearity of output
 - Minimal hysteresis and temperature effects
 - ✓ Drawbacks:
 - Output has a residual ripple that varies with speed and can't be fully filtered
 - Ripple coefficient: 2–5% of mean output
 - Linearity: within 0.1–1%.

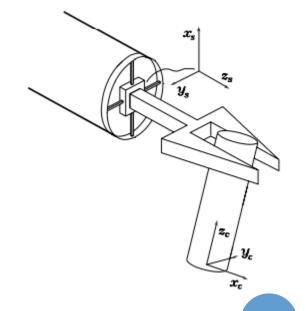
- 5.3.2 Velocity Transducers
 - AC Tachometer
 - ✓ Avoids DC ripple problems
 - ✓ Not a true generator; designed for specific speed-proportional output
 - ✓ Structure includes:
 - Two quadrature stator windings, A lightweight rotor (low inertia, no brushes)
 - One winding is excited with a 400 Hz sinusoidal voltage.
 - Other winding produces an output voltage:
 - Same frequency as input, Magnitude proportional to speed, Phase indicates rotation direction
 - ✓ Advantages:
 - No mechanical contacts (more durable), Smoother output, better suited for precision



5.4 Exteroceptive Sensors

- □ 5.4.1 Force Sensors
 - * Force/torque measurement is typically based on detecting strain in an element
 - Strain gauges convert small mechanical deformations into changes in electrical resistance, enabling indirect force measurement
 - Strain Gauge
 - ✓ Consists of a wire on an insulated support, glued to a deformable element
 - ✓ Wire's **resistance** (**Rs**) changes with deformation
 - ✓ Incorporated into a **Wheatstone bridge** to convert resistance changes into measurable voltage:

$$V_o = \left(rac{R_2}{R_1 + R_2} - rac{R_s}{R_3 + R_s}
ight)V_i$$



- □ 5.4.1 Force Sensors
 - Shaft Torque Sensor
 - ✓ Used for direct torque measurement when current-based indirect estimates are insufficient
 - ✓ Strain gauges placed on hollow shafts with:
 - Low torsional stiffness
 - High bending stiffness
 - ✓ Gauges connected to a Wheatstone bridge and signal transmitted via slip rings and graphite brushes
 - ✓ Measures output torque to the joint, not the internal motor torque

- □ 5.4.1 Force Sensors
 - Wrist Force Sensor
 - ✓ Measures 3D force and 3D moment vectors at the manipulator's end-effector
 - ✓ Typically placed between the manipulator's outer link and the end-effector
 - ✓ Contains multiple extensible elements with strain gauges
 - ✓ Geometry ensures:
 - At least one element deforms for any force/moment direction.
 - Minimal cross-sensitivity between components

- □ 5.4.2 Range Sensors
 - * Provide external environmental data to enable autonomous, intelligent behavior.
 - Primary Purposes:
 - ✓ Object detection
 - ✓ Distance measurement
 - ✓ Obstacle avoidance
 - ✓ Environment mapping
 - ✓ Object recognition

5.4 Exteroceptive Sensors

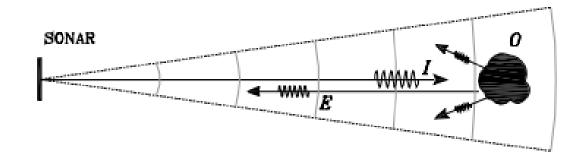
- □ 5.4.2 Range Sensors
 - Proximity Sensors
 - ✓ Detect presence of nearby objects without contact.
 - ✓ Output: Binary (object detected or not).
 - ✓ Operate within a limited "sensitive range".
 - ✓ Simplified version of range sensors.

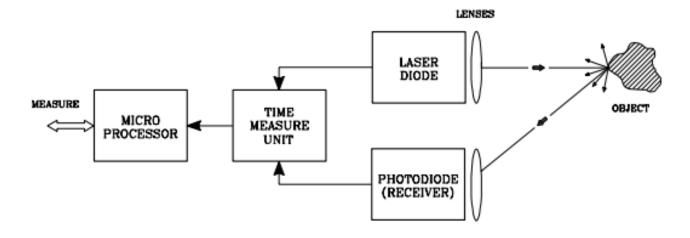
Capacitive Sensor

Ultrasonic Sensor

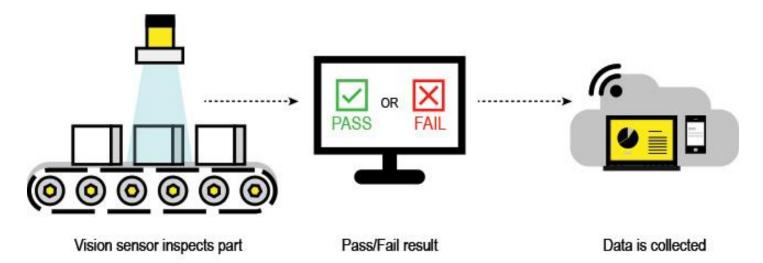
Inductive Sensor

دانشکده مهندسی مکانیک – درس رباتیک پیشرفته


- □ 5.4.2 Range Sensors
 - Range Sensors
 - \checkmark Provide distance and direction to objects \rightarrow allow spatial localization.
 - ✓ Output: Structured data (e.g., coordinates in sensor's reference frame).
 - ✓ Enable:
 - Mapping
 - Navigation
 - Object tracking



- □ 5.4.2 Range Sensors
 - Sonar (Ultrasonic Sensors)
 - ✓ Based on sound wave propagation
 - ✓ Advantages:
 - Low cost, Lightweight, Low power consumption, Low processing needs, Works in low-visibility (e.g., underwater, dark) environments
 - ✓ Limitations:
 - Low angular and radial resolution, Minimum/maximum range constraints, Broad beam (less precise localization), Accuracy and resolution decrease in complex or reflective environments



- □ 5.4.2 Range Sensors
 - Laser (LIDAR)
 - ✓ Based on light wave propagation (laser beams).
 - ✓ Provide high-resolution, accurate distance measurements.
 - ✓ Widely used for:
 - SLAM (Simultaneous Localization and Mapping)
 - Navigation in autonomous vehicles and robots

- □ 5.4.3 Vision Sensors
 - Pixel (Photosite): Converts light to electrical energy
 - * Lens: Focuses light onto the image plane
 - Shutter: Controls light exposure time
 - * Preprocessing Electronics: Prepare the signal for further processing

5.4 Exteroceptive Sensors

- □ 5.4.3 Vision Sensors
 - Sensor Technologies:
 - ✓ CCD (Charge Coupled Device)
 - ✓ CMOS (Complementary Metal Oxide Semiconductor)

Feature	CCD	CMOS
Power efficiency	Lower	Higher
Cost	Higher	Lower
Speed	Slower	Faster
Image quality	Higher (traditionally)	Improving steadily

