




#### Semnan University Faculty of Mechanical Engineering



دانشکده مهندسی مکانیک

درس رباتیک

ROBOTICS

Chapter 6 – Control Architecture Class Lecture

#### • CONTENTS:

Chapter 1: Introduction

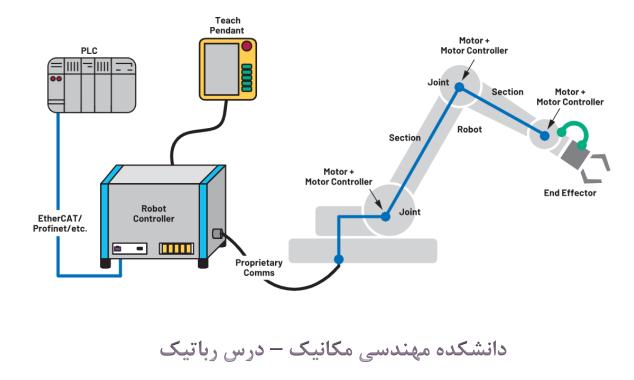
Chapter 2: Kinematics

Chapter 3: Differential Kinematics and Statics

Chapter 4: Trajectory Planning

Chapter 5: Actuators and Sensors



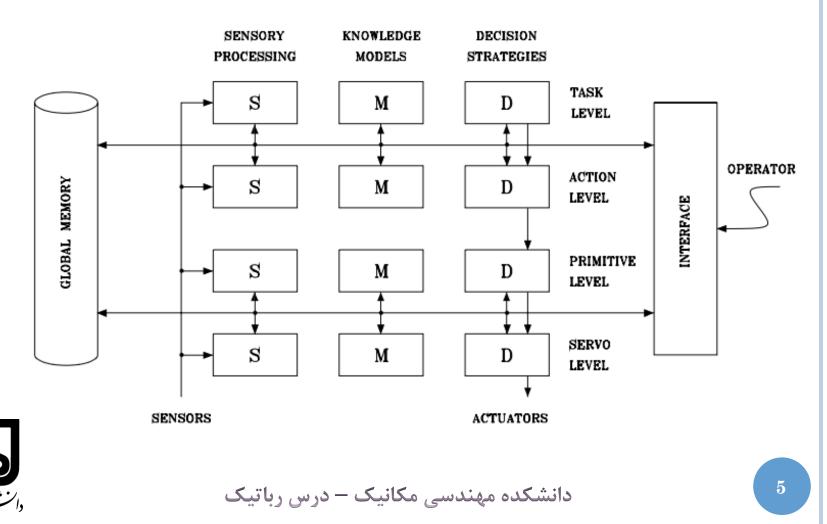

Chapter 6: **Control Architecture** 



دانشکده مهندسی مکانیک – درس رباتیک

# 6. CONTROL ARCHITECTURE

- □ A reference functional architecture of an industrial robot control system
- Emphasizing its hierarchical modular structure
  - Clarifies how robot functions are organized and executed
  - \* Defines programming requirements, such as abstraction levels and interfaces
  - \* Guides the hardware architecture by specifying control responsibilities at each level






- □ The control system to supervise the activities of a robotic system should be endowed with a number of tools providing the following functions:
  - Capability of moving physical objects in the working environment, i.e., manipulation ability
  - Capability of obtaining information on the state of the system and working environment, i.e., sensory ability
  - Capability of exploiting information to modify system behaviour in a preprogrammed manner, i.e., intelligence ability
  - Capability of storing, elaborating and providing data on system activity, i.e., data processing ability.



#### □ Reference model for a control system functional architecture



- □ Task Level High-Level Planning
  - User-defined goal, specified in a symbolic or abstract form (e.g., "assemble part A to part B")
  - \* The system analyzes and decomposes this task into elementary actions.
  - Relies on a knowledge base (e.g., tools, parts, procedures) and sensor data (e.g., object locations via cameras or proximity sensors).
  - Outputs: symbolic actions (like "move to part", "pick", "assemble")



#### □ Action Level – Path Planning

\* Translates symbolic actions into specific motion paths or intermediate configurations

#### Decides:

- ✓ Coordinate system (e.g., joint space vs operational space)
- ✓ Separation of translation and rotation
- Path planning (e.g., via points, interpolation)
- Checks for feasibility
  - ✓ Collision avoidance, joint limits, singularities, and use of redundancy
- Uses a geometric/environmental model and receives updates from range or lowlevel vision sensors.



دانشکدہ مہندسی مکانیک – درس رباتیک

□ Primitive Level – Trajectory and Control Preparation

- \* Computes detailed motion trajectories from paths provided by the action level
- Determines:
  - ✓ Trajectory interpolation (for smooth execution)
  - Control strategy (e.g., centralized, decentralized, impedance control)
  - ✓ Gains and transformations (like inverse kinematics)
- Uses the dynamic model of the manipulator
- Sensory feedback (like force sensors) is used to detect and handle conflicts between plan and execution.

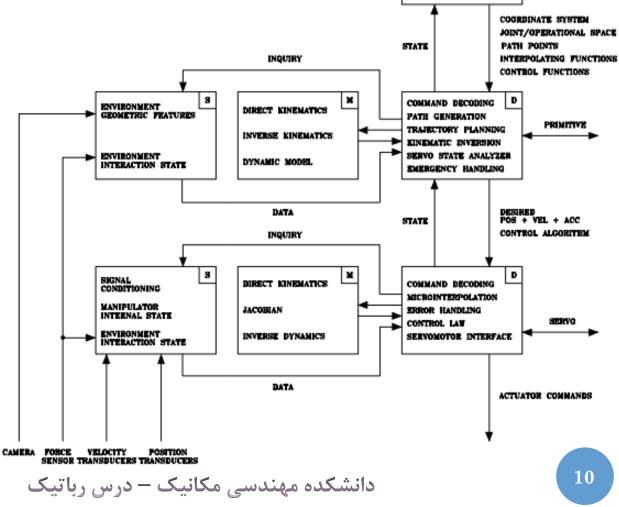


دانشکدہ مہندسی مکانیک – درس رباتیک

#### Servo Level – Low-Level Control

- Executes real-time control laws to drive the robot's actuators (motors)
- Performs:
  - ✓ Microinterpolation for precise motion,
  - Computation of control signals (e.g., voltage, current)
  - Error correction using sensor feedback (from proprioceptive sensors)
- Ensures smooth and accurate trajectory following based on the kinematic/dynamic models.




HIGH-LEVEL COMMAND INTERPRETER

D

ACTION

# **6.1 FUNCTIONAL ARCHITECTURE**

 Hierarchical levels of a functional architecture for industrial robots

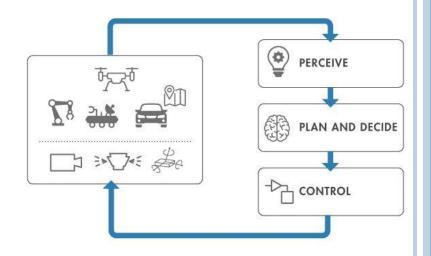




## 6.2 Programming Environment

- Programming Environment: Provides tools and languages for task definition
- \* Task Instructions: Operators use the environment to specify robot actions
- Translation Function: Converts high-level commands into executable instructions
- Monitoring Function: Checks and verifies correct task execution
- \* Unique Challenges: Impacts the physical world, not just virtual outcomes
- Unexpected situations may occur despite accurate models
- \* Key Difference from Traditional Programming: Must handle real-world unpredictability




دانشکده مهندسی مکانیک – درس رباتیک

#### Chapter 6 - Control Architecture

### 6.2 Programming Environment

□ A robot programming environment features:

- Real-time operating system
- World modelling
- Motion control
- Sensory data reading
- Interaction with physical system
- Error detection capability
- Recovery of correct operational functions
- Specific language structure





#### 6.2 Programming Environment

- □ 6.2.1 Teaching-by-Showing
  - \* Basic Concept: Operator manually guides the robot or uses a teach pendant
  - Motion Storage: Joint positions are recorded for later playback
  - \* No Logic Handling: Lacks capabilities for logic or sequence control
  - \* Low Technical Barrier: Plant technicians can program without special skills
  - Robot Downtime: Robot must be offline during teaching
  - Common Uses: Spot welding, spray painting, simple palletizing
  - Can be improved by advanced control algorithms



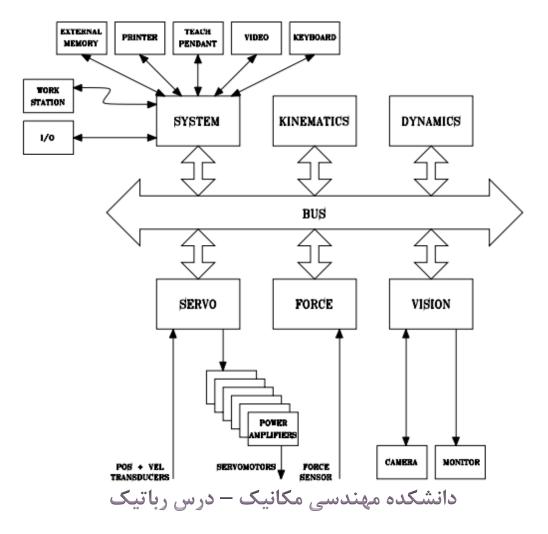
دانشکدہ مہندسی مکانیک – درس رباتیک

## 6.2 Programming Environment

#### □ 6.2.2 Robot-oriented Programming

- Improved by Low-Cost Computing: Enabled development of structured, robotspecific languages.
- Integration of Functions: Combines high-level language features (e.g., BASIC, PASCAL) with robotics-specific needs.
- \* Still Supports Teaching-by-Showing: Retains compatibility with early methods.
- \* Requires Skilled Programmers: Operator must be fluent in structured languages.
- Supports Offline Programming: Programs can be developed without the robot, ideal for structured environments.
- Enables Complex Applications: Suitable for tasks like assembly in work cells with other machines.
- \* Functional Access Level: Operator works at the action level.




دانشکدہ مہندسی مکانیک – درس ریاتیک

- □ Hierarchical Functional Structure: Control system follows a layered model
- Distributed Implementation: Functions are mapped to distributed computational boards
- Communication Infrastructure: Boards connected via a high-speed bus system
- Real-Time Performance:
  - Servo and primitive levels require high real-time computing
  - Action level still has limited implementation in most systems
- **Bus Bandwidth:** Must be sufficient to handle real-time data flow between modules



دانشکدہ مہندسی مکانیک – درس رباتیک

General model of the hardware architecture of an industrial robot's control system





□ The system board is typically a CPU endowed with:

- \* A microprocessor with mathematical coprocessor
- \* A bootstrap EPROM (Erasable Programmable Read Only Memory) memory
- \* A local RAM memory
- \* A RAM memory shared with the other boards through the bus
- \* A number of serial and parallel ports interfacing the bus and the external world
- Counters, registers and timers



- □ Additional Processing Power:
  - Boards may include extra processors
  - Purpose: To handle computationally intensive or specialized tasks
  - \* Architecture: complement the basic system board and integrated via the bus system

#### □ The other boards

- Kinematics board
- Dynamics board
- Servo board
- Force board
- Vision board



دانشکده مهندسی مکانیک – درس رباتیک