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3. DIFFERENTIAL KINEMATICS AND STATICS

❑ Differential Kinematics:

❖ The relationship between the joint velocities and the corresponding end-effector

linear and angular

❖ This mapping is described by a matrix, termed Geometric Jacobian, which depends

on the manipulator configuration.

❑ Analytical Jacobian:

❖ The end-effector pose is expressed with reference to a minimal representation in

the operational space, it is possible to compute the Jacobian matrix via

differentiation of the direct kinematics function with respect to the joint variables.
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3. DIFFERENTIAL KINEMATICS AND STATICS

❑ The Jacobian is used for:

❖ Finding singularities

❖ Analyzing redundancy

❖ Determining inverse kinematics algorithms

❖ Describing the mapping between forces applied to the end-effector and 

resulting torques at the joints (statics) 

❖ Deriving dynamic equations of motion 

❖ Designing operational space control schemes

4



3.1 GEOMETRIC JACOBIAN

❑ The direct kinematics equation for an n-DOF manipulator:

❑ It is desired to express the end-effector linear velocity and angular

velocity ωe as a function of the joint velocities
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3.1 GEOMETRIC JACOBIAN

❑ The manipulator differential kinematics equation:

❖ The (6×n) matrix J is the manipulator geometric Jacobian:

✓ JP : (3 × n) matrix relating the contribution of joint velocities to end-effector linear velocity

✓ JO : (3 × n) matrix relating the contribution of joint velocities to end-effector angular velocity
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3.1.1 DERIVATIVE OF A ROTATION MATRIX

❑ The derivative of a rotation matrix with respect to time:

❖ A time-varying rotation matrix R(t)

❖ Set S:

✓ The (3 × 3) matrix S is skew-symmetric since: 
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3.1.1 DERIVATIVE OF A ROTATION MATRIX

❖ Postmultiplying both sides by R(t) :

✓ The time derivative of R(t) is expressed as a function of R(t).

❖ Consider a constant vector p’ and the vector  p(t) = R(t) p’ :

✓ It is known from mechanics that (ω(t) denotes the angular velocity of frame R(t) with 

respect to the reference frame):
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3.1.1 DERIVATIVE OF A ROTATION MATRIX

❑ Therefore, the matrix operator S(t) describes the vector product between the 

vector ω and the vector R(t)p’.

❖ It can be shown that:
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3.1.1 DERIVATIVE OF A ROTATION MATRIX

❑ Example 3.1 

❖ The elementary rotation matrix about axis z
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3.1.1 DERIVATIVE OF A ROTATION MATRIX

❑ The coordinate transformation of a point P from Frame 1 to Frame 0:

❖ which is the known form of the velocity composition rule.
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3.1.2 LINK VELOCITIES

❑ Using Denavit–Hartenberg convention:
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3.1.2 LINK VELOCITIES

❑ pi−1 and  pi : Position vectors of the origins of Frames i−1 and i

❖ The linear velocity of Link i as a function of the translational and rotational

velocities of Link i − 1
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3.1.2 LINK VELOCITIES

❑ Link angular velocity:
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3.1.2 LINK VELOCITIES

❑ Prismatic joint
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3.1.2 LINK VELOCITIES

❑ Revolute joint

16



3.1.3 JACOBIAN COMPUTATION

❑ it is convenient to proceed separately for linear velocity and angular velocity.

❖ The linear velocity

✓ A prismatic joint

✓ A revolute joint
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3.1.3 JACOBIAN COMPUTATION

❑ Velocity contribution of a revolute joint to the end-effector linear velocity
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3.1.2 LINK VELOCITIES

❖ The angular velocity

✓ A prismatic joint

✓ A revolute joint
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3.1.2 LINK VELOCITIES

❑ The Jacobian
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3.1.2 LINK VELOCITIES

❑ The vectors zi−1, pe and pi−1  are all functions of the joint variables:

❖ Jacobian in a different Frame u:
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3.2 JACOBIAN OF TYPICAL MANIPULATOR STRUCTURES

❑ 3.2.1 Three-link Planar Arm
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3.2 JACOBIAN OF TYPICAL MANIPULATOR STRUCTURES

❑ 3.2.2 Anthropomorphic Arm
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3.3 KINEMATIC SINGULARITIES

❑ The Jacobian in the differential kinematics equation of a manipulator defines

a linear mapping:

❑ Kinematic Singularities: Configurations that J is rank-deficient

❖ Singularities represent configurations at which mobility of the structure is reduced,

i.e., it is not possible to impose an arbitrary motion to the end-effector.

❖ When the structure is at a singularity, infinite solutions to the inverse kinematics

problem may exist.

❖ In the neighborhood of a singularity, small velocities in the operational space may

cause large velocities in the joint space.
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3.3 KINEMATIC SINGULARITIES

❑ Boundary singularities:

❖ Occur when the manipulator is either outstretched or retracted.

❖ Do not represent a true drawback, since they can be avoided on condition that the

manipulator is not driven to the boundaries of its reachable workspace.

❑ Internal singularities:

❖ Occur inside the reachable workspace and are generally caused by the alignment of

two or more axes of motion, or else by the attainment of particular end-effector

configurations.

❖ Constitute a serious problem, as they can be encountered anywhere in the reachable

workspace for a planned path in the operational space.
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3.3 KINEMATIC SINGULARITIES

❑ Example 3.2

❖ A two-link planar arm

❖ When the arm tip is located either on the outer (ϑ2 = 0) or on the inner (ϑ2 = π)

boundary of the reachable workspace.

❖ Two column vectors of the Jacobian become parallel, and thus the Jacobian rank

becomes one.
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3.6 ANALYTICAL JACOBIAN

❑ If the end-effector pose is specified in terms of a minimal number of

parameters, it is possible to compute the Jacobian via differentiation of the

direct kinematics function with respect to the joint variables.

❑ The Analytical Technique:
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3.8 STATICS

❑ The goal of statics is to determine the relationship between the generalized

forces applied to the end-effector and the generalized forces applied to the

joints (forces for prismatic joints, torques for revolute joints) with the

manipulator at an equilibrium configuration.

❑ The application of the principle of virtual work:

❖ Joint Torques

❖ End-effector forces
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3.8 STATICS

❑ By accounting for the differential kinematics relationship:

❖ The manipulator is at static equilibrium if and only if:
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