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3. DIFFERENTIAL KINEMATICS AND STATICS

Differential Kinematics:

The relationship between the joint velocities and the corresponding end-effector
linear and angular

This mapping is described by a matrix, termed Geometric Jacobian, which depends
on the manipulator configuration.

Analytical Jacobian:

The end-effector pose is expressed with reference to a minimal representation in
the operational space, it is possible to compute the Jacobian matrix via
differentiation of the direct kinematics function with respect to the joint variables.
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Chapter 3 - Differential Kinematics and Statics

3. DIFFERENTIAL KINEMATICS AND STATICS
The Jacobian is used for:
Finding singularities
Analyzing redundancy
Determining inverse kinematics algorithms

Describing the mapping between forces applied to the end-effector and

resulting torques at the joints (statics)
Deriving dynamic equations of motion

Designing operational space control schemes
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Chapter 3 - Differential Kinematics and Statics

3.1 GEOMETRIC JACOBIAN

o The direct kinematics equation for an n-DOF manipulator:

T.(q)=| TP P9 g=[a ... @l

. of 1

o It is desired to express the end-effector linear velocity p. and angular
velocity @, as a function of the joint velocities g

— We = Jo(q)q
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Chapter 3 - Differential Kinematics and Statics

3.1 GEOMETRIC JACOBIAN

2 The manipulator differential kinematics equation:

I Pe | :
Ve = W, —J(Q)q

< The (6xn) matrix J is the manipulator geometric Jacobian:

Jp

J = Jo

v Jy: (3 x n) matrix relating the contribution of joint velocities to end-effector linear velocity
v J,: (3 x n) matrix relating the contribution of joint velocities to end-effector angular velocity
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Chapter 3 - Differential Kinematics and Statics

3.1.1 DERIVATIVE OF A ROTATION MATRIX

o The derivative of a rotation matrix with respect to time:
< Atime-varying rotation matrix ~(t)

R = R(t)
—p R(R'(t) =1

b R(HRT(t) + R(OR (t) = O

< Set S:
S(t) = R(t)R (t)

v" The (3 x 3) matrix S is skew-symmetric since:
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Chapter 3 - Differential Kinematics and Statics

3.1.1 DERIVATIVE OF A ROTATION MATRIX

< Postmultiplying both sides by R(?):

S(t)=R(t)R'(t) == R(t)=S(t)R(t)
v" The time derivative of R(t)is expressed as a function of R(z).

< Consider a constant vector p’and the vector p(t) =R(t) p’:
p(t) = R(t)p" w=p  P(t) = S({t)R()p

v~ It is known from mechanics that (@(z) denotes the angular velocity of frame R(t) with
respect to the reference frame):

w—p  P(t) = w(t) x R(t)p'
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Chapter 3 - Differential Kinematics and Statics

3.1.1 DERIVATIVE OF A ROTATION MATRIX

o Therefore, the matrix operator S(?) describes the vector product between the
vector w and the vector R(t)p".

0 —W, Wy ]
— S = W 0 — Wy
| —wy Wy 0
=P S(t) = S(w(t)) -» R=Sw)R

< |t can be shown that:
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Chapter 3 - Differential Kinematics and Statics

3.1.1 DERIVATIVE OF A ROTATION MATRIX

0 Example 3.1
< The elementary rotation matrix about axis z

cosae —sina 0
R.(a) = | sina cosa 0

0 0 1

—asina  —d cos o [}} [msa sin o 0}

wp S(t) = | qcosa —casina 0| | —sina cosa 0

0 0 0 0 0 1
(0 —a 0

=|a 0 0]=S8w(t)).
00 0

w=I[0 0 a]"
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Chapter 3 - Differential Kinematics and Statics

3.1.1 DERIVATIVE OF A ROTATION MATRIX

2 The coordinate transformation of a point P from Frame 1 to Frame O:

p{]_ﬂl_l_R

= p°=0)+R%b' + R p

—p P’ =0]+ Rip" + S(w))R]p'

=P P =0]+Rp +w x7r

< which is the known form of the velocity composition rule.
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Chapter 3 - Differential Kinematics and Statics

3.1.2 LINK VELOCITIES

0 Using Denavit—Hartenberg convention:
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Chapter 3 - Differential Kinematics and Statics

3.1.2 LINK VELOCITIES

4 p;_;and p;: Position vectors of the origins of Frames /—Z and /7

B A
P, =Pi—1 +t Riar; 1

. . “i—1 1—1
—p D, =P+t R 7, twi i XR 71

=P;_1 TVi—14 TWi—1 XTi_1;

< The linear velocity of Link 7 as a function of the translational and rotational
velocities of Link 7 — 1
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Chapter 3 - Differential Kinematics and Statics

3.1.2 LINK VELOCITIES

o Link angular velocity:

R, =R, R
=P S(wi)R;=S(wi—1)Ri + Ri_1S(w; 1 )R,
=P R,_1S(w )R '=R_1Sw_i,)R_R,_1R "
=p R, 1S(w; )R =SRiw] )R

=P S(w;,)R;=S(w;,_1)R; +S(R;_1w'_ | ,)R;
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Chapter 3 - Differential Kinematics and Statics

3.1.2 LINK VELOCITIES

2 Prismatic joint
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Chapter 3 - Differential Kinematics and Statics

3.1.2 LINK VELOCITIES

o Revolute joint
Wi—1,1 = Vizi_1

Vi1, =Wi—1,4i XTi—1

w;_ 1+ %z 1

W;

- D, =Pi1+wi XTi_1;
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Chapter 3 - Differential Kinematics and Statics

3.1.3 JACOBIAN COMPUTATION

o 1t is convenient to proceed separately for linear velocity and angular velocity.
< The linear velocity

fpe — 3pﬁ ZJPIQL

v" A prismatic joint

G = d; wp  §iJp; =diZi—1 w—p Jp; = Zi-1

v" Arrevolute joint
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Chapter 3 - Differential Kinematics and Statics

3.1.3 JACOBIAN COMPUTATION

2 Velocity contribution of a revolute joint to the end-effector linear velocity
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Chapter 3 - Differential Kinematics and Statics

3.1.2 LINK VELOCITIES

< The angular velocity

We = Wy = Zwi—l,i — Zjoi‘i‘z‘

v" A prismatic joint

3iJoi = 0 =i J1oi =0

v" Arevolute joint

4idoi = ViZi—1 = Joi = %i—1

&)

d&qw}, Sl (o — Silo | cwaipo 0uSCiSlS Q




Chapter 3 - Differential Kinematics and Statics

3.1.2 LINK VELOCITIES

o The Jacobian

Jp1 IPn |
J =
| Jo1 Jon |
Zgl] for a prismatic joint
Bz] - :3'—1 X (Pe — Pi_1) joi
‘ h e i—1 for a revolute joint.
i—1
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Chapter 3 - Differential Kinematics and Statics

3.1.2 LINK VELOCITIES

0 The vectors Z;

—p Z ] = R?(@l} e Rij(fﬁ—l)ﬁn
# f}ﬁ — A[I}(QI) . *Ag_l(qn)ﬁﬂ

—_ u R" O
- D1 =A(q).. 7 =[O R“]J

< Jacobian in a different Frame u:

pe]_[B" O][b|_[R
wi!l | O R"||w.| | O

w =
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2{12[0 0 l]T
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Chapter 3 - Differential Kinematics and Statics

3.2 JACOBIAN OF TYPICAL MANIPULATOR STRUCTURES

0 3.2.1 Three-link Planar Arm

—VJ(Q)={

Po =
P2 =

P3 =

zo X (p3 — Po)

Z0) 21

K aicy
0 P1 = | ai1s1
| 0 0

a1c1 + asci12
181 + a2812
0

(1181 + (2812 + 135123

aic1 + asac12 + aszciag ]

0

0
Z20=21=22= 1|0
@ 1
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Chapter 3 - Differential Kinematics and Statics

3.2 JACOBIAN OF TYPICAL MANIPULATOR STRUCTURES

0 3.2.1 Three-link Planar Arm

[ —a181 — ags812 — A35123
aicy + azc12 + a3ci123
wlp J = U
0
0
L 1
» JF _ —151 — 95192 — 35123
| ai1c1 + a2012 +asci123

&)

dfféwf)

&JL’_) dv_)é—gi‘é&o L;N«A.;.Qro PR L] K

—a2812 — 38123 —a35123 ]
a2C12 + a3C123 a3C123
0 0
0 0
0 0
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Chapter 3 - Differential Kinematics and Statics

3.2 JACOBIAN OF TYPICAL MANIPULATOR STRUCTURES

0 3.2.2 Anthropomorphic Arm

—-—) ] — 20 X (P3 —Pg) 21 X (P3—P1) 22X (P3 — P3)

Z0 Z1 Z9
0 a92C1C2
po=p1= |0 P2 = | az281¢2

0 1259

cq(ageq + agess)
Ps = | s1(asece + azcas)
252 + 3523

0 51
zn = 0 21 =Zp= | —4
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Chapter 3 - Differential Kinematics and Statics

3.2 JACOBIAN OF TYPICAL MANIPULATOR STRUCTURES

0 3.2.2 Anthropomorphic Arm

dfféwf)

- —s1(azc2 + azca3) —ci(a2s2 +assaz) —aszcisas ]
ci(azca + azces)  —si(azs2 + azs23) —azsisqa
0 a2Cs + 13023 (324
0 81
0 -
L 1 0

&JL’) dv_)é—gi‘é&o L;NA.;.Q&.Q PR L] K




Chapter 3 - Differential Kinematics and Statics

3.2 JACOBIAN OF TYPICAL MANIPULATOR STRUCTURES

0 3.2.2 Anthropomorphic Arm

—s1(agca + ageag) —cilagss + agsay) —azcyssg
# JP — {Jl(ﬂgﬂg —|— {Igﬂgg) —8 ({LQSQ —|— {13523) —351593
I 0 azcz + azca3 ascas
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Chapter 3 - Differential Kinematics and Statics

3.3 KINEMATIC SINGULARITIES

The Jacobian in the differential kinematics equation of a manipulator defines
a linear mapping: _ T -
—p v, =J(q)q ve =[P, w,_ |

=

Kinematic Singularities. Configurations that J is rank-deficient
Singularities represent configurations at which mobility of the structure is reduced,

I.e., it is not possible to impose an arbitrary motion to the end-effector.

When the structure is at a singularity, infinite solutions to the inverse kinematics

problem may exist.

In the neighborhood of a singularity, small velocities in the operational space may

cause large velocities in the joint space.
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3.3 KINEMATIC SINGULARITIES

Boundary singularities:
Occur when the manipulator is either outstretched or retracted.

Do not represent a true drawback, since they can be avoided on condition that the
manipulator is not driven to the boundaries of its reachable workspace.

Internal singularities:

Occur inside the reachable workspace and are generally caused by the alignment of
two or more axes of motion, or else by the attainment of particular end-effector
configurations.

Constitute a serious problem, as they can be encountered anywhere in the reachable
workspace for a planned path in the operational space.
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Chapter 3 - Differential Kinematics and Statics

3.3 KINEMATIC SINGULARITIES

0 Example 3.2 A
< Atwo-link planar arm

—a1s51 — 42512 —da2512

a1C1 + azci2 a2C12

J —

wep det(J) = ajasss
welp o =0 Vo =T

< When the arm tip is located either on the outer (92 = 0) or on the inner (42 = z)
boundary of the reachable workspace.
< Two column vectors of the Jacobian become parallel, and thus the Jacobian rank

becomes one.
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Chapter 3 - Differential Kinematics and Statics

3.6 ANALYTICAL JACOBIAN

o If the end-effector pose is specified in terms of a minimal number of
parameters, it is possible to compute the Jacobian via differentiation of the
direct kinematics function with respect to the joint variables.

o The Analytical Technigue:
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p L=
P,

-

# j}(:‘
# (r;jfi_
JP(‘I)]
= J
7.(q) q=Jalq)q
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9q qg=Jp(q)q
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dq
ok(q)
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Chapter 3 - Differential Kinematics and Statics

3.8 STATICS

The goal of statics is to determine the relationship between the generalized
forces applied to the end-effector and the generalized forces applied to the
joints (forces for prismatic joints, torques for revolute joints) with the
manipulator at an equilibrium configuration.

The application of the principle of virtual work:
Joint Torques

wp AW, =711dg

End-effector forces
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Chapter 3 - Differential Kinematics and Statics

3.8 STATICS
o By accounting for the differential kinematics relationship:
dW, = fldp, + plw.dt

Vo=t wIT i AW, = fLIp(q)dg + pr Jo(q)dg

= . J(q)dq
SW, = 114q

= .
oW, =~ J(q)dq

< The manipulator is at static equilibrium if and only if:

W, =0W, Viq w=p T=J"(q),
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