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2. KINEMATICS

A manipulator:

Kinematic chain of rigid bodies (links) connected by means of revolute or
prismatic joints.

The derivation of the Direct Kinematics Equation allows the end-effector
position and orientation (pose) to be expressed as a function of the joint
variables.

With reference to a minimal representation of orientation, the concept of
Operational Space is introduced and its relationship with the Joint Space is
established.
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Chapter 2 - Kinematics

2.1 POSE OF A RIGID BODY

2 Arigid body is completely described in space by its position and orientation
(in brief pose) with respect to a reference frame.

! / /
o =o0,z+o0,y+0,2,

o Components of the vector along the frame axes
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Chapter 2 - Kinematics

2.1 POSE OF A RIGID BoDY

0 O—xyz: Reference frame

0 O’—x’y’z’: Orthonormal frame attached to the body and express its unit
vectors with respect to the reference frame.

I / I
r =r,r+Ir,Yy+T,z

f f f
Yy =y, z+y,yt+y,z

f f f
zZ =Z,+2,Yyt+z,z

< The components of each unit vector are the direction cosines of the axes of frame
O’—x’y’z’ with respect to the reference frame O—xyz.
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Chapter 2 - Kinematics

2.2 ROTATION MATRIX

0 O—xyz and O’—x’y’z’ frames

A
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Chapter 2 - Kinematics

2.2 ROTATION MATRIX

2 Unit vectors describing body orientation with respect to reference frame

- - T T [

oyl zl 'z y'x Mz
. r ! ! . ! ! ' - T T T
R=|2' y 2'|=|z, vy, z,|=|2"Yy y'y z"y
i i xl oyl 2l 2Tz yTz 27Tz

0 Column vectors of matrix R are mutually orthogonal since they represent
the unit vectors of an orthonormal frame

meyF T [].

I
o
=
]

I
o
8]
8
I

2 Also, they have unit norm
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Chapter 2 - Kinematics

2.2 ROTATION MATRIX

! - - T T L

Loy 2l e y'x 2Max
_ / ! / _ - / ' _ rT T 1T
R=\|z' ¢ 2'|=|2, vy, z,|=|2"y vy 2"y
i i z) oyl 2l 2Tz yTz 27Tz
2 As a consequence, R is an orthogonal matrix
RTR — I:.g
# RT — R—l

< Right-handed frame: def(R)=1
< Left-handed frame: det(R)=-1
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Chapter 2 - Kinematics

2.2.1 ELEMENTARY ROTATIONS

o Elementary rotations of the reference frame about one of the coordinate axes
< Reference frame O—xyz is rotated by an angle e about axis z

A _ -
z |z COS
I .
T — | sInx
0
yl [~ . _11 ) =
. A . S111 (¥
!
y' . y Yy = COS (¥
> >
x o Y i 0 _
a B D m
o !
z = |0
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Chapter 2 - Kinematics

2.2.1 ELEMENTARY ROTATIONS

o Rotation matrix of frame O—x’y’z’ with respect to frame O-xyz is

cosa —sina 0
R.(a) = | sina cosa 0
i 0 () 1]
A
z | 2z
y
2 Jk 2!
y! a ’
- o r
xr o 17
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Chapter 2 - Kinematics

2.2.1 ELEMENTARY ROTATIONS

o Rotations by an angle gabout axis y

cos@ 0 sinf]
R,(3) = 0 1 0
—sinf3 0 cosf3 |

2 Rotation by an angle yabout axis x

1 0 0
R.(v) =10 cosy —sinvy
0 siny cosvy |

< Also:

&)
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Chapter 2 - Kinematics

2.2.2 REPRESENTATION OF A VECTOR

2 With coincident origins

- -
A P= | Dy p' = |p,
2l | Pz | i -p; 1
M P Fr: v B ]
. '
RN p=p,x +py +p.2'=|x y 2|p
a Ty v ) '
A A -» p=Rp.

. -» p =R'p
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Chapter 2 - Kinematics

2.2.2 REPRESENTATION OF A VECTOR

0 Example 2.1

! ! .

Pz = Py COSQX — P, SN Y
! . )

Py = Pz S Q1 Py COS ¥

!
Pz = P:-
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Chapter 2 - Kinematics

2.2.3 ROTATION OF A VECTOR

o A rotation matrix can be also interpreted as the matrix operator allowing
rotation of a vector by a given angle about an arbitrary axis in space.

0 Example 2.2 y
Dy = P COS QX — -p; SIN
f . !
Py = Pz SN + P, COS
!
P = P--
-] = Rz(ﬂfjpf
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2.2.3 ROTATION OF A VECTOR

A rotation matrix attains three equivalent geometrical meanings:

Mutual orientation between two coordinate frames

(its column vectors are the direction cosines of the axes of the rotated frame
with respect to the original frame)

Coordinate transformation between the coordinates of a point expressed in two
different frames (with common origin)

An operator that allows the rotation of a vector in the same coordinate frame.
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Chapter 2 - Kinematics

2.3 COMPOSITION OF ROTATION MATRICES

0 O—XyYoZg, O—X1Y,21, O—X5Y,2, (three frames with common origin O)
o The vector p: position of a generic point in space
<« po pl, P2 the expressions of pin the three frames.

p' = R;p°
p’ = Ryp’

< The overall rotation can be expressed as a sequence of partial rotations

o Also:

&)
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2.3 COMPOSITION OF ROTATION MATRICES

The frame with respect to which the rotation occurs is termed current
frame.

Composition of successive rotations is then obtained by postmultiplication
of the rotation matrices following the given order of rotations

&)
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2.3 COMPOSITION OF ROTATION MATRICES

Successive rotations can be also specified by constantly referring them to the
Initial frame.

In this case, the rotations are made with respect to a fixed frame.
— ()

R, = RIRjR,R] =» R)—=R'R

Hence, it can be stated that composition of successive rotations with respect
to a fixed frame is obtained by premultiplication of the single rotation
matrices in the order of the given sequence of rotations.

An important issue of composition of rotations is that the matrix product is not
commutative.

&)
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Chapter 2 - Kinematics

2.3 COMPOSITION OF ROTATION MATRICES

0 Example 2.3
< Successive rotations of an object about axes of current frame
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Chapter 2 - Kinematics

2.3 COMPOSITION OF ROTATION MATRICES

0 Example 2.3
< Successive rotations of an object about axes of fixed frame
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2.4 EULER ANGLES

A minimal representation of orientation can be obtained by using a set of
threeangles /¢ 3 w JT.

2.4.1 ZYZ Angles
Rotate the reference frame by the angle ¢ about axis z
Rotate the current frame by the angle $about axis y
Rotate the current frame by the angle yabout axis z

z |2 2!
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Chapter 2 - Kinematics

2.4 EULER ANGLES

0 2.4.1 ZYZ Angles

< The resulting frame orientation is obtained by composition of rotations with respect
to current frames

R(¢) = R.(p)Ry (J)R.» (V)
CoCPCyy — S8y —CpCySy — 8,6y CpSy
= | 8,C9Cy + Cu8y  —SuCeSy + CuCy 8,59
| —SPCy) S84 Ca 1

&)
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2.4 EULER ANGLES

2.4.2 RPY Angles
Representation of orientation in the aeronautical field.

These are the ZY X angles, also called Roll-Pitch—Yaw angles, to denote the typical
changes of attitude of an aircraft.

The angles [ ¢ ¢ w ] T represent rotations defined with respect to a fixed frame
attached to the center of mass of the aircraft.

1
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Chapter 2 - Kinematics

2.4 EULER ANGLES

0 2.4.2 RPY Angles
< Rotate the reference frame by the angle y about axis x (yaw)
< Rotate the reference frame by the angle $about axis y (pitch)
< Rotate the reference frame by the angle ¢ about axis z (roll)

R(¢) = R.(¢)Ry (V) R:(¢))

CpoCl  CpSPSyy — SpCqyy  CpSPCy + Sy Sy
SpCH  SpSPSy T Culyy  S,89Cy, — CpSy
—5 C) Sq) CHCafs

&)
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2.5 ANGLE AND AXIS

A nonminimal representation: rotation of a given angle about an axis in
space (with 4 parameters)

This can be advantageous in the problem of trajectory planning for a
manipulator’s end-effector orientation.

A

z
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Chapter 2 - Kinematics

2.5 ANGLE AND AXIS

o Let r=[r,r,r,]"be the unit vector of a rotation axis with respect to the
reference frame O-xyz.
2 In order to derive the rotation matrix R(9, r) expressing the rotation of an

angle ¢ about axis r
R(T?, T) — Rz(&)Ry (:}?)Rz ('ﬂ)Ry(_ﬁ)Rz(_&)

o Ty . e
singy = ——— COS (¥ = ——e
/.2 2 /.2 2
s+ Uy e by

sinff = 4/r2 4 -rﬁ cos 3 =r,.

r2(1 —cy) + ¢y reTy(l —cy) =189 Tar(l —cy) 4 1ySy 1
welp R(U.7)=| 711y (1 —cy) +7.89 ’rg(l —cy) + ¢y ryT. (1 —cy) — 1rySy
| rera (1 —cy) —Tysy Tyr(l —cy) + 1259 r2(1 —cp) + ¢y
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Chapter 2 - Kinematics

2.5 ANGLE AND AXIS

2 The inverse problem

9 — cos —1 (T‘n + 722 + 133 — 1)
— COS :

i1 Ti2 Ti13

R= |12y 722 723 — B ]
_ 1 a2 — T23
31 T32 T33 p = ris — Ta
2sin v/ ‘ A ’
| 721 — T12 |

< The three components of rare not independent but are constrained:

2 2 .2
ry+r,+r;=1

&)
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Chapter 2 - Kinematics

2.6 UNIT QUATERNION

o The drawbacks of the angle/axis representation can be overcome by a
different four-parameter representation; namely, the Unit Quaternion

Q = {n, €}
0.

7] = COS —

2

€ =s8In—17r
2
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2.6 UNIT QUATERNION

0 177 : the scalar part of the quaternion while

Chapter 2 - Kinematics

ae=[e, & & ]T the vector part of the quaternion.

sz—l—Ei—l—Ei—l—Egzl

2(n? +€2) -1

w——p  R(n,€) = | 2(ez€, + 7e)

&)

2(€,€,

— 1)€y)

2(ex€y — MeE2)
2(n? + Fi) -1
2(e €, + MeEL)

d&qw}, Sl (o — Silo | cwaipo 0uSCiSlS
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Chapter 2 - Kinematics

2.7 HOMOGENEOUS TRANSFORMATIONS

2 The position of a rigid body in space:
< Position of a point on the body with respect to a reference frame (translation)

< Components of the unit vectors (orientation) of a frame attached to the body with
respect to the same reference frame (rotation)

& - o
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Chapter 2 - Kinematics

2./ HOMOGENEOUS TRANSFORMATIONS

o Coordinate transformation (translation + rotation) of a bound vector between
two frames:
/ R.1- - - 0 0 0
Ry : Roj[atlon matrix of Frame 1 p = o, + R
with respect to Frame 0

2 The inverse transformation:

p' = —R]To] + R)"p" === p' = —Rjo]+ Ryp’

OO yu
)
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2./ HOMOGENEOUS TRANSFORMATIONS

Chapter 2 - Kinematics

o The Homogeneous Representation of a generic vectorp : (p™)

< In order to achieve a compact representation of the relationship between the
coordinates of the same point in two different frames

Pl o

=1
|

< Homogeneous Transformation Matrix

&)
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Chapter 2 - Kinematics

2./ HOMOGENEOUS TRANSFORMATIONS

0 Homogeneous Transformation Matrix

A?z R{1] ﬂ?
o 1 4
0 0 1 1
Al = R" —Ri" o} _ R, ~Ro]
. of 1 4 L of 1
< Notice that: _
otice tha A 1%AT

p’=AVAl. . A"

&)
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Chapter 2 - Kinematics

2.8 DIRECT KINEMATICS

o A manipulator:
< Series of rigid bodies (links) connected by means of kinematic pairs or joints

2 Joints:
< Revolute
< Prismatic
REVOLUTE PRISMATIC

&; [y — —
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2.8 DIRECT KINEMATICS

The whole structure forms a Kinematic Chain.
v One end of the chain is constrained to a base.
v" The other end is an end-effector (gripper, tool)

Open kinematic chain (only one sequence of links connecting the two ends)
Closed kinematic chain (a sequence of links forms a loop)

Characterized by a number of degrees of freedom (DOFs)
v" Uniquely determine its posture.
v" Each DOF is typically associated with a joint articulation and constitutes a joint variable

Direct kinematics:
Compute the pose of the end-effector as a function of the joint variables

&)
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Chapter 2 - Kinematics

2.8 DIRECT KINEMATICS

o Direct kinematics function homogeneous transformation matrix

Th(q) = | @ 5:@) acld) pl)

L 0 0 0 1

“n,, S,, d,and p,are a function of g

&)
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Chapter 2 - Kinematics

2.8 DIRECT KINEMATICS

0 Example 2.4
< Two-link planar arm

Tlf{q] _ ﬂ? 3: ﬂrf P, _ 0 —eci12 812 ai181 +azs12
- 1 0 0 0
0o 0 0o 1] [0 0 0 1 |
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Chapter 2 - Kinematics

2.8 DIRECT KINEMATICS

0 2.8.1 Open Chain
< An open-chain manipulator constituted by n + 1 links connected by n joints
< Define a coordinate frame attached to each link, from Link O to Link n

< The coordinate transformation describing the position and orientation of Frame n
with respect to Frame O:

T (q) = AY(q1)AL(qz) ... A" (q,) =e—ip T'(q) =TT (q)T"

On
y!l
zn
[i]
T (q)

= Swily w0 — Slso  cwdipo suSiWlS




Chapter 2 - Kinematics

2.8 DIRECT KINEMATICS

0 2.8.2 Denavit—Hartenberg Convention

< A systematic, general method is to be derived to define the relative position and
orientation of two consecutive links

JOINT 2-1 JOINT 2 JOINT 1+1

&)
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2.8 DIRECT KINEMATICS

2.8.2 Denavit—Hartenberg Convention
Let Axis i denote the axis of the joint connecting Link i — 1 to Link i
The Denavit—Hartenberg convention (DH) is adopted to define link Frame i:
v" Choose axis zi along the axis of Joint i + 1
v Locate the origin O; and O;’
v" Choose axis x; along the common normal to axes z;_, and z; (from Joint i to Joint i + 1)
v" Choose axis y; so as to complete a right-handed frame.

JOINT 1-1 JOINT 1 JOINT 1+1

&)
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2.8 DIRECT KINEMATICS

2.8.2 Denavit—Hartenberg Convention

The Denavit—Hartenberg convention gives a nonunique definition of the link frame
in the following cases:

v" For Frame 0, only the direction of axis z, is specified; O, and x, can be arbitrarily chosen

v" For Frame n (no Joint n+1) z,, is not uniquely defined while x, has to be normal to axis z,,_,
(Typically, Joint n is revolute, and thus z, is to be aligned with the direction of z,_,)

v When two consecutive axes are parallel, the common normal is not uniquely defined

v When two consecutive axes intersect, the direction of xi is arbitrary

v When Joint i is prismatic, the direction of z,_, is arbitrary

&)
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Chapter 2 - Kinematics

2.8 DIRECT KINEMATICS

0 2.8.2 Denavit—Hartenberg Convention
< Parameters:
v" &, Distance between O; and O;’
v" d;: Coordinate of O; along z;_,
v" a;: Angle between axes z;_; and z; about axis xi (positive: counter-clockwise)

v, Angle between axes x;_; and x; about axis z; ; (positive: counter-clockwise)

JOINT -1 JOINT 1 JOINT i+1

&)
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Chapter 2 - Kinematics

2.8 DIRECT KINEMATICS

0 2.8.2 Denavit—Hartenberg Convention

< Two of the four parameters (a; and o;) are always constant and depend only on the
geometry of connection between consecutive joints.

< If Joint I Is revolute the variable is 9;

<« If Joint 1 Is prismatic the variable iIs d,

JOINT -1 JOINT 1 JOINT i+1

JWW’)




Chapter 2 - Kinematics

2.8 DIRECT KINEMATICS

0 2.8.2 Denavit—Hartenberg Convention
< Coordinate transformation between Frame i and Frame i — 1:

1. Choose a frame aligned with Frame i — 1

2. Translate the chosen frame by d;along axis z;_, and rotate it by $;about axis z;_,

[ Cy, —Sy, 0 07
i—1 S.!f}i E'i[’i U U
Ai! o 0 0 1 d;
L 0 0 0 1.

&)
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2.8 DIRECT KINEMATICS

0 2.8.2 Denavit—Hartenberg Convention

Chapter 2 - Kinematics

< Coordinate transformation between Frame i and Frame i — 1:

3. Translate the frame aligned with Frame i’ by a;along x; and rotate it by ¢, about x;

"1 0
: 0 sq,
0 0
4. Post-multiplicate the single transformations:
- Co,
i—1 _oAi—1 41" | S,
ﬁ A'.i (q:i.) — A{" Ai — Ut

@ L 0

0 a;
—Sa; 0
Ca, 0
0 1
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.1 Three-link Planar Arm
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.1 Three-link Planar Arm
< DH Parameters

Link @; Y d; Vi
1 a1 0
2 (12 U
3 (i3 0
;. —S; 0 a;e;
- si ¢ 0 a;s; :
A’ 1 191 — Si Ci 191 — 1.9
T ( ) U 0 l [] l 1 '.'3
L0 0 0 1 .
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.1 Three-link Planar Arm
< All joints are revolute:

CC123 —S123 0 ajcp + azci2 + ascies
T[J(q) — A0AL A2 — S123 €123 0 @181+ azs12 + assios
3 1 243 0 U 1 0
0 0 0 1

q — [191 Vo 19:-1]T

« End-effector frame: -0 0 1 0°
s |0 1 0 0

Te=1_10 0 0

L0 0 0 1

& |
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

o 2.9.3 Spherical Arm
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

o 2.9.3 Spherical Arm
< DH Parameters

Link a; x; d; i
1 0 —7 /2 0 U1
2 0 /2 da P!
3 0 0 ds 0

&)
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

o 2.9.3 Spherical Arm
< The homogeneous transformation matrices:

1 0 —s1 07 “co ()
, S 0 C 0 , 59 0
P R ] IR
L0 0 0 1] 0 0

1 0 0 07

9 {01 0 0

Al ) =10 0 1 a

0 0 0 1.

&)
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.3 Spherical Arm
< The direct kinematics function:

CC1Cy  —81 €189 C189d3 — s1do ]
§1C2 €1 8182 S182d3 + c1ds
m—p T3(q) = AJA A3 =
‘ : —S9 0 Co cods
L0 0 0 1 il

q = [’b’l 1?2 dg]T

&)
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.4 Anthropomorphic Arm
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.4 Anthropomorphic Arm
< DH Parameters:

Lirlk [F k4 di '191'
1 0 /2 0 W
2 as 0 0 a2
3 s 0 0 U3
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.4 Anthropomorphic Arm

"cr 0 sy 07
) s1 0 —ec1 0
AV = |° |
(%) 1 0 0
0 0 0 1
;o —s; 0 a;e;
. si ;0 a;s;
A7) = | T ! v i =23
i (Vs 0O O 1 0 '
Lo 0 0 1 J
[cic23 —cC1823 S1 ci(azce + ascas)
S§1C23 —81823 —c1 Silasco + ascss
593 23 0 (1289 + (138923
L 0 0 0 1 _
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

o 2.9.5 Spherical Wrist
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.5 Spherical Wrist
< DH Parameters:

Link a; i d; OF
4 0 —7 /2 0 V4
5 0 w2 0 Vs
6 0 0 dg g

&)
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.5 Spherical Wrist

"cqg 0 —sg4 07 e 0 s5 07
3,0  |Sa 0 ca 0 1,9y _ |85 0 —e5 O
Ai0) =109 1 o o AW =149 1 0 o
L0 0 0 1. L0 0 0 1]

"cg —Sg 0 07

5 |ss ¢ 0 0

As(V6) = 0 0 1 dg

L 0O 0O 0 1.
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.5 Spherical Wrist

=P T;(q) = AJASAG =

q= [“Ji

dfféwf)

[ C4C5C — 5453
54C5Ce + C45¢

—55Cq S55¢
! 0 0
T?E ﬂﬁ ]T

t_ia:fl.’_) Lyv_)é—&n.;&o (5‘”4-;-@-" PR L] K

—CyCr5 — S54Cq
—84C58g + C4Cq

Cq85  CyS5dg T
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

o 2.9.6 Stanford Manipulator
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

o 2.9.6 Stanford Manipulator
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2.10 JOINT SPACE AND OPERATIONAL SPACE

Direct Kinematics:
Position and orientation of the end-effector frame to be expressed as a function of
the joint variables with respect to the base frame.

This is quite easy for the position, but quite difficult for orientation
(9 components must be guaranteed to satisfy the orthonormality constraints)

The end-effector pose can be given by a minimal number of coordinates and
minimal representation (Euler angles) describing the rotation

o= | 7|

P, End-effector position
@, . End-effector orientation
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2.10 JOINT SPACE AND OPERATIONAL SPACE

The vector X, is defined in the space in which the manipulator task is
specified; hence, this space is typically called operational space.
_ pﬁ]

':'I'l'l':' - {i}
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On the other hand, the joint space (configuration space) denotes the space Iin

which the (nx1) vector of joint variables 0
g=|

QH

L =

For a revolute joint: q; = v
For a prismatic joint: i — d;

Direct Kinematics Equation.: r. = k Eq 5}
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Chapter 2 - Kinematics

2.10 JOINT SPACE AND OPERATIONAL SPACE

0 Example 2.5

okt 11C1 + d2C12 + A3C123
xe = | py | = k(q) = | a151 + azs12 + azsi2s
]  + P + U3

< 3 joint space variables allow specification of at
most 3 independent operational space variables.

< |f orientation is of no concern, there is kinematic
redunaancy.
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Chapter 2 - Kinematics

2.10 JOINT SPACE AND OPERATIONAL SPACE

o 2.10.1 Workspace

< The region described by the origin of the end-effector frame when all the
manipulator joints execute all possible motions

< This volume is finite, closed, connected and is defined by its bordering surface

0 Example 2.6
< The simple two-link planar arm
A
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2.10 JOINT SPACE AND OPERATIONAL SPACE

2.10.2 Kinematic Redundancy

Kinematically Redundant:

When number of DOFs is greater than the number of variables that are necessary
to describe a given task

A manipulator is intrinsically redundant when the dimension of the
operational space is smaller than the dimension of the joint space (m <n)

Redundancy is a concept relative to the task assigned to the manipulator.
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2.12 INVERSE KINEMATICS PROBLEM

The inverse kinematics problem consists of the determination of the joint
variables corresponding to a given end-effector position and orientation.

It transforms the motion specifications, assigned to the end-effector in the

operational space, into the corresponding joint space motions that allow
execution of the desired motion.

The inverse kinematics problem is much more complex:
The equations to solve are in general nonlinear
Multiple solutions may exist
Infinite solutions may exist
There might be no admissible solutions
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Chapter 2 - Kinematics

2.12 INVERSE KINEMATICS PROBLEM

0 2.12.1 Solution of Three-link Planar Arm

< The end-effector position and orientation in terms of a minimal number of
parameters:

v The two coordinates p,, p,
v" The angle ¢ with axis X
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Chapter 2 - Kinematics

2.12 INVERSE KINEMATICS PROBLEM

0 2.12.1 Solution of Three-link Planar Arm
< Algebralc solution technigue

¢ =101+ 12+ 73

Pwr = Pr — A3Cy = A1C1 + A2C12

= —

Pwy = Py — Q384 = 181 + @2812

2 2 2 2
# Pwr + p'ﬁfy — a4 + (1o -+ 2&1 (129
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2.12 INVERSE KINEMATICS PROBLEM

0 2.12.1 Solution of Three-link Planar Arm
< Algebralc solution technigue

2 2 2 2
o _ Pive T Pwy — a1 — a2
.-E —
2aq a9

w— o = Atan2(s2, c2)
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Chapter 2 - Kinematics

2.12 INVERSE KINEMATICS PROBLEM

0 2.12.1 Solution of Three-link Planar Arm
< Algebralc solution technigue

(a1 + asc2)pwy — a252PW s

Pwz T Pw
y
#
. (a1 + asca)pw . + azsapwy,
1=

2 2
Pwaz T Py

w1, = Atan2(sq,cq)
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Chapter 2 - Kinematics

2.12 INVERSE KINEMATICS PROBLEM

0 2.12.1 Solution of Three-link Planar Arm
< Geometric solution technique
v" The application of the cosine theorem to the triangle formed by links a;, a, and

the segment connecting points W and O
2 2 2 2 _ [
Pw z + pﬂr’y — a4 + oy — 2!11{12 COSs (ﬂ' — ]_)2)
2 2 2 2
Pw + pﬁ*’y — aq — g Y,

2011 a9

ﬁ Co =

) 1o = +cos _l(r:g)

v" The elbow-up and elbow-down posture
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Chapter 2 - Kinematics

2.12 INVERSE KINEMATICS PROBLEM

0 2.12.1 Solution of Three-link Planar Arm
< Geometric solution technique

2 2 2 p
Pw o + Py, T 01 — a3

. . 2 — . . —1
cg \/pWI + Py = 31 + a9Co —} 3 = cos

2'ﬁ*l \/p%‘ir’:c + p%ﬁr”y

= AtanQ(PWyﬁ Pwz)

— ) = a3

@ 0
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