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2. KINEMATICS

❑ A manipulator:

❖ Kinematic chain of rigid bodies (links) connected by means of revolute or

prismatic joints.

❑ The derivation of the Direct Kinematics Equation allows the end-effector

position and orientation (pose) to be expressed as a function of the joint

variables.

❑ With reference to a minimal representation of orientation, the concept of

Operational Space is introduced and its relationship with the Joint Space is

established.
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2.1 POSE OF A RIGID BODY

❑ A rigid body is completely described in space by its position and orientation

(in brief pose) with respect to a reference frame.

❑ Components of the vector along the frame axes
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2.1 POSE OF A RIGID BODY

❑ O–xyz: Reference frame

❑ O’–x’y’z’: Orthonormal frame attached to the body and express its unit

vectors with respect to the reference frame.

❖ The components of each unit vector are the direction cosines of the axes of frame

O’–x’y’z’ with respect to the reference frame O–xyz.
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2.2 ROTATION MATRIX

❑ O–xyz and O’–x’y’z’ frames
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2.2 ROTATION MATRIX

❑ Unit vectors describing body orientation with respect to reference frame

❑ Column vectors of matrix R are mutually orthogonal since they represent

the unit vectors of an orthonormal frame

❑ Also, they have unit norm
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2.2 ROTATION MATRIX

❑ As a consequence, R is an orthogonal matrix

❖ Right-handed frame: det(R) = 1

❖ Left-handed frame: det(R) = −1
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2.2.1 ELEMENTARY ROTATIONS

❑ Elementary rotations of the reference frame about one of the coordinate axes

❖ Reference frame O–xyz is rotated by an angle α about axis z
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2.2.1 ELEMENTARY ROTATIONS

❑ Rotation matrix of frame O–x’y’z’ with respect to frame O-xyz is

10



2.2.1 ELEMENTARY ROTATIONS

❑ Rotations by an angle β about axis y

❑ Rotation by an angle γ about axis x

❖ Also:
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2.2.2 REPRESENTATION OF A VECTOR

❑ With coincident origins
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2.2.2 REPRESENTATION OF A VECTOR

❑ Example 2.1
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2.2.3 ROTATION OF A VECTOR

❑ A rotation matrix can be also interpreted as the matrix operator allowing

rotation of a vector by a given angle about an arbitrary axis in space.

❑ Example 2.2
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2.2.3 ROTATION OF A VECTOR

❑ A rotation matrix attains three equivalent geometrical meanings:

❖ Mutual orientation between two coordinate frames

(its column vectors are the direction cosines of the axes of the rotated frame

with respect to the original frame)

❖ Coordinate transformation between the coordinates of a point expressed in two

different frames (with common origin)

❖ An operator that allows the rotation of a vector in the same coordinate frame.
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2.3 COMPOSITION OF ROTATION MATRICES

❑ O–x0y0z0, O–x1y1z1, O–x2y2z2 (three frames with common origin O)

❑ The vector p: position of a generic point in space

❖ p0, p1, p2 : the expressions of p in the three frames.

❖ The overall rotation can be expressed as a sequence of partial rotations

❑ Also:
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2.3 COMPOSITION OF ROTATION MATRICES

❑ The frame with respect to which the rotation occurs is termed current

frame.

❑ Composition of successive rotations is then obtained by postmultiplication

of the rotation matrices following the given order of rotations
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2.3 COMPOSITION OF ROTATION MATRICES

❑ Successive rotations can be also specified by constantly referring them to the

initial frame.

❑ In this case, the rotations are made with respect to a fixed frame.

❑ Hence, it can be stated that composition of successive rotations with respect

to a fixed frame is obtained by premultiplication of the single rotation

matrices in the order of the given sequence of rotations.

❖ An important issue of composition of rotations is that the matrix product is not

commutative.
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2.3 COMPOSITION OF ROTATION MATRICES

❑ Example 2.3

❖ Successive rotations of an object about axes of current frame
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2.3 COMPOSITION OF ROTATION MATRICES

❑ Example 2.3

❖ Successive rotations of an object about axes of fixed frame
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2.4 EULER ANGLES

❑ A minimal representation of orientation can be obtained by using a set of 

three angles [ ϕ  ϑ  ψ  ] T . 

❑ 2.4.1 ZYZ Angles

❖ Rotate the reference frame by the angle ϕ about axis z

❖ Rotate the current frame by the angle ϑ about axis y 

❖ Rotate the current frame by the angle ψ about axis z
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2.4 EULER ANGLES

❑ 2.4.1 ZYZ Angles

❖ The resulting frame orientation is obtained by composition of rotations with respect 

to current frames
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2.4 EULER ANGLES

❑ 2.4.2 RPY Angles

❖ Representation of orientation in the aeronautical field.

❖ These are the ZYX angles, also called Roll–Pitch–Yaw angles, to denote the typical

changes of attitude of an aircraft.

❖ The angles [ ϕ ϑ ψ ] T represent rotations defined with respect to a fixed frame

attached to the center of mass of the aircraft.
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2.4 EULER ANGLES

❑ 2.4.2 RPY Angles

❖ Rotate the reference frame by the angle ψ about axis x (yaw)

❖ Rotate the reference frame by the angle ϑ about axis y (pitch)

❖ Rotate the reference frame by the angle ϕ about axis z (roll)
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2.5 ANGLE AND AXIS

❑ A nonminimal representation: rotation of a given angle about an axis in

space (with 4 parameters)

❑ This can be advantageous in the problem of trajectory planning for a

manipulator’s end-effector orientation.

25



2.5 ANGLE AND AXIS

❑ Let r = [ rx ry rz ] T be the unit vector of a rotation axis with respect to the 

reference frame O–xyz. 

❑ In order to derive the rotation matrix R(ϑ, r) expressing the rotation of an 

angle ϑ about axis r
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2.5 ANGLE AND AXIS

❑ The inverse problem

❖ The three components of r are not independent but are constrained:
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2.6 UNIT QUATERNION

❑ The drawbacks of the angle/axis representation can be overcome by a

different four-parameter representation; namely, the Unit Quaternion
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2.6 UNIT QUATERNION

❑ η : the scalar part of the quaternion while

❑ ε = [εx εy εz ] T : the vector part of the quaternion.
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2.7 HOMOGENEOUS TRANSFORMATIONS

❑ The position of a rigid body in space:

❖ Position of a point on the body with respect to a reference frame (translation)

❖ Components of the unit vectors (orientation) of a frame attached to the body with

respect to the same reference frame (rotation)
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2.7 HOMOGENEOUS TRANSFORMATIONS

❑ Coordinate transformation (translation + rotation) of a bound vector between 

two frames:

✓ R0
1 : Rotation matrix of Frame 1 

with respect to Frame 0

❑ The inverse transformation:
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2.7 HOMOGENEOUS TRANSFORMATIONS

❑ The Homogeneous Representation of a generic vector p : ( p˜ )

❖ In order to achieve a compact representation of the relationship between the

coordinates of the same point in two different frames

❖ Homogeneous Transformation Matrix
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2.7 HOMOGENEOUS TRANSFORMATIONS

❑ Homogeneous Transformation Matrix

❖ Notice that:
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2.8 DIRECT KINEMATICS

❑ A manipulator:

❖ Series of rigid bodies (links) connected by means of kinematic pairs or joints

❑ Joints: 

❖ Revolute

❖ Prismatic
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2.8 DIRECT KINEMATICS

❖ The whole structure forms a Kinematic Chain. 

✓ One end of the chain is constrained to a base. 

✓ The other end is an end-effector (gripper, tool)

❖ Open kinematic chain (only one sequence of links connecting the two ends)

❖ Closed kinematic chain (a sequence of links forms a loop)

❖ Characterized by a number of degrees of freedom (DOFs)

✓ Uniquely determine its posture.

✓ Each DOF is typically associated with a joint articulation and constitutes a joint variable

❑ Direct kinematics: 

❖ Compute the pose of the end-effector as a function of the joint variables
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2.8 DIRECT KINEMATICS

❑ Direct kinematics function homogeneous transformation matrix

❖ ne , se , ae and pe are a function of q
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2.8 DIRECT KINEMATICS

❑ Example 2.4

❖ Two-link planar arm
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2.8 DIRECT KINEMATICS

❑ 2.8.1 Open Chain

❖ An open-chain manipulator constituted by n + 1 links connected by n joints

❖ Define a coordinate frame attached to each link, from Link 0 to Link n

❖ The coordinate transformation describing the position and orientation of Frame n

with respect to Frame 0:
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2.8 DIRECT KINEMATICS

❑ 2.8.2 Denavit–Hartenberg Convention

❖ A systematic, general method is to be derived to define the relative position and 

orientation of two consecutive links
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2.8 DIRECT KINEMATICS

❑ 2.8.2 Denavit–Hartenberg Convention

❖ Let Axis i denote the axis of the joint connecting Link i − 1 to Link i

❖ The Denavit–Hartenberg convention (DH) is adopted to define link Frame i: 

✓ Choose axis zi along the axis of Joint i + 1

✓ Locate the origin Oi and Oi’ 

✓ Choose axis xi along the common normal to axes zi−1 and zi (from Joint i to Joint i + 1)

✓ Choose axis yi so as to complete a right-handed frame.
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2.8 DIRECT KINEMATICS

❑ 2.8.2 Denavit–Hartenberg Convention

❖ The Denavit–Hartenberg convention gives a nonunique definition of the link frame

in the following cases:

✓ For Frame 0, only the direction of axis z0 is specified; O0 and x0 can be arbitrarily chosen

✓ For Frame n (no Joint n+1) zn is not uniquely defined while xn has to be normal to axis zn−1

(Typically, Joint n is revolute, and thus zn is to be aligned with the direction of zn−1)

✓ When two consecutive axes are parallel, the common normal is not uniquely defined

✓ When two consecutive axes intersect, the direction of xi is arbitrary

✓ When Joint i is prismatic, the direction of zi−1 is arbitrary
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2.8 DIRECT KINEMATICS

❑ 2.8.2 Denavit–Hartenberg Convention

❖ Parameters:

✓ ai :  Distance between Oi and Oi’ 

✓ di :  Coordinate of Oi along zi−1

✓ αi :  Angle between axes zi−1 and zi about axis xi (positive: counter-clockwise)

✓ ϑi :  Angle between axes xi−1 and xi about axis zi−1 (positive: counter-clockwise)
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2.8 DIRECT KINEMATICS

❑ 2.8.2 Denavit–Hartenberg Convention

❖ Two of the four parameters (ai and αi) are always constant and depend only on the 

geometry of connection between consecutive joints.

❖ If Joint i is revolute the variable is ϑi

❖ If Joint i is prismatic the variable is di
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2.8 DIRECT KINEMATICS

❑ 2.8.2 Denavit–Hartenberg Convention

❖ Coordinate transformation between Frame i and Frame i − 1:

1. Choose a frame aligned with Frame i − 1

2. Translate the chosen frame by di along axis zi−1 and rotate it by ϑi about axis zi−1
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2.8 DIRECT KINEMATICS

❑ 2.8.2 Denavit–Hartenberg Convention

❖ Coordinate transformation between Frame i and Frame i − 1:

3. Translate the frame aligned with Frame i’ by ai along xi and rotate it by αi about xi

4. Post-multiplicate the single transformations:
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

❑ 2.9.1 Three-link Planar Arm
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

❑ 2.9.1 Three-link Planar Arm

❖ DH Parameters
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

❑ 2.9.1 Three-link Planar Arm

❖ All joints are revolute:

❖ End-effector frame:
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

❑ 2.9.3 Spherical Arm
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

❑ 2.9.3 Spherical Arm

❖ DH Parameters
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

❑ 2.9.3 Spherical Arm

❖ The homogeneous transformation matrices:
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

❑ 2.9.3 Spherical Arm

❖ The direct kinematics function:

52



2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

❑ 2.9.4 Anthropomorphic Arm
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

❑ 2.9.4 Anthropomorphic Arm

❖ DH Parameters:
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

❑ 2.9.4 Anthropomorphic Arm
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

❑ 2.9.5 Spherical Wrist

56



2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

❑ 2.9.5 Spherical Wrist

❖ DH Parameters:
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

❑ 2.9.5 Spherical Wrist
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

❑ 2.9.5 Spherical Wrist
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

❑ 2.9.6 Stanford Manipulator
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

❑ 2.9.6 Stanford Manipulator
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2.10 JOINT SPACE AND OPERATIONAL SPACE

❑ Direct Kinematics:

❖ Position and orientation of the end-effector frame to be expressed as a function of
the joint variables with respect to the base frame.

❖ This is quite easy for the position, but quite difficult for orientation

(9 components must be guaranteed to satisfy the orthonormality constraints)

❑ The end-effector pose can be given by a minimal number of coordinates and
minimal representation (Euler angles) describing the rotation

❖ pe : End-effector position

❖ φe : End-effector orientation
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2.10 JOINT SPACE AND OPERATIONAL SPACE

❑ The vector xe is defined in the space in which the manipulator task is

specified; hence, this space is typically called operational space.

❑ On the other hand, the joint space (configuration space) denotes the space in

which the (n×1) vector of joint variables

❖ For a revolute joint:

❖ For a prismatic joint:

❑ Direct Kinematics Equation:
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2.10 JOINT SPACE AND OPERATIONAL SPACE

❑ Example 2.5

❖ 3 joint space variables allow specification of at

most 3 independent operational space variables.

❖ If orientation is of no concern, there is kinematic

redundancy.

64



2.10 JOINT SPACE AND OPERATIONAL SPACE

❑ 2.10.1 Workspace

❖ The region described by the origin of the end-effector frame when all the

manipulator joints execute all possible motions

❖ This volume is finite, closed, connected and is defined by its bordering surface

❑ Example 2.6 

❖ The simple two-link planar arm
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2.10 JOINT SPACE AND OPERATIONAL SPACE

❑ 2.10.2 Kinematic Redundancy

❑ Kinematically Redundant:

❖ When number of DOFs is greater than the number of variables that are necessary

to describe a given task

❑ A manipulator is intrinsically redundant when the dimension of the

operational space is smaller than the dimension of the joint space ( m < n )

❑ Redundancy is a concept relative to the task assigned to the manipulator.
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2.12 INVERSE KINEMATICS PROBLEM

❑ The inverse kinematics problem consists of the determination of the joint

variables corresponding to a given end-effector position and orientation.

❑ It transforms the motion specifications, assigned to the end-effector in the

operational space, into the corresponding joint space motions that allow

execution of the desired motion.

❑ The inverse kinematics problem is much more complex:

❖ The equations to solve are in general nonlinear

❖ Multiple solutions may exist

❖ Infinite solutions may exist

❖ There might be no admissible solutions
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2.12 INVERSE KINEMATICS PROBLEM

❑ 2.12.1 Solution of Three-link Planar Arm 

❖ The end-effector position and orientation in terms of a minimal number of

parameters:

✓ The two coordinates px, py

✓ The angle φ with axis x0
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2.12 INVERSE KINEMATICS PROBLEM

❑ 2.12.1 Solution of Three-link Planar Arm 

❖ Algebraic solution technique
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2.12 INVERSE KINEMATICS PROBLEM

❑ 2.12.1 Solution of Three-link Planar Arm 

❖ Algebraic solution technique
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2.12 INVERSE KINEMATICS PROBLEM

❑ 2.12.1 Solution of Three-link Planar Arm 

❖ Algebraic solution technique

71



2.12 INVERSE KINEMATICS PROBLEM

❑ 2.12.1 Solution of Three-link Planar Arm

❖ Geometric solution technique

✓ The application of the cosine theorem to the triangle formed by links a1, a2 and
the segment connecting points W and O

✓ The elbow-up and elbow-down posture
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2.12 INVERSE KINEMATICS PROBLEM

❑ 2.12.1 Solution of Three-link Planar Arm 

❖ Geometric solution technique
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