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Chapter 3 - Differential Kinematics and Statics

3. DIFFERENTIAL KINEMATICS AND STATICS

Differential Kinematics:

The relationship between the joint velocities and the corresponding end-effector
linear and angular

This mapping is described by a matrix, termed Geometric Jacobian, which depends
on the manipulator configuration.

Analytical Jacobian:

The end-effector pose is expressed with reference to a minimal representation in
the operational space, it is possible to compute the Jacobian matrix via
differentiation of the direct kinematics function with respect to the joint variables.
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3. DIFFERENTIAL KINEMATICS AND STATICS

The Jacobian is used for:
Finding singularities
Analyzing redundancy

Determining inverse kinematics algorithms

Describing the mapping between forces applied to the end-effector and

resulting torques at the joints (statics)
Deriving dynamic equations of motion

Designing operational space control schemes
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Chapter 3 - Differential Kinematics and Statics

3.1 GEOMETRIC JACOBIAN

2 The direct kinematics equation for an n-DOF manipulator:

TE(Q) — RF(Q) pE(q) q = [91 «v« Qn

. of 1

0 It is desired to express the end-effector linear velocity p,” and angular
velocity o, as a function of the joint velocities q" .

— We = Jo(q)q
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3.1 GEOMETRIC JACOBIAN

2 The manipulator differential kinematics equation:

I Pe | :
Ve = W, —J(Q)q

< The (6xn) matrix J is the manipulator geometric Jacobian:

Jp

J = Jo

v Jp (3 x n) matrix relating the contribution of joint velocities to end-effector linear velocity
v Jo : (3 x n) matrix relating the contribution of joint velocities to end-effector angular velocity
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3.1.1 DERIVATIVE OF A ROTATION MATRIX

2 The derivative of a rotation matrix with respect to time:
< Atime-varying rotation matrix R(t)

R = R(t)
w—p R()R'(t) =1

b R(RT() + ROR (t) =0

< Set S:
S(t) = R(t)R' (t)

v" The (3 x 3) matrix S is skew-symmetric since:
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3.1.1 DERIVATIVE OF A ROTATION MATRIX

< Postmultiplying both sides by R(t) :

S(t) = R(t)R'(t) == R(t) = S(t)R(t)
v" The time derivative of R(t) is expressed as a function of R(t).

< Consider a constant vector p” and the vector p(t) =R(t) p’:
p(t) = R()p" w=p  P(t) =S(t)R(t)p’

v It is known from mechanics that (w(?) denotes the angular velocity of frame R(t) with
respect to the reference frame):

- D(t) = w(t) x R(O)P'
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3.1.1 DERIVATIVE OF A ROTATION MATRIX

o Therefore, the matrix operator S(t) describes the vector product between the
vector w and the vector R(t)p .

w(t) = |wy wy w, [T

0 —W, Wy
# S: W 0 —Ws
Wy Wy 0
=P S(t) = S(w(t)) =» R=Sw)R

< It can be shown that;
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3.1.1 DERIVATIVE OF A ROTATION MATRIX

0 Example 3.1
< The elementary rotation matrix about axis z

(cosa —sina 0]
R.(a) = | sina cosa 0
0 0 1
[ —&sina  —dcosa 0 cosae sina 0
w=p S(t) = | dcosa —asina (}} |:—Si11ﬂf CoS ov O}
0 0 0 0 0 1
[0 —a 0
=|la 0 0] =S8(w(t)).
0 0 0

w=I[0 0 a]"
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3.1.1 DERIVATIVE OF A ROTATION MATRIX

2 The coordinate transformation of a point P from Frame 1 to Frame O:
0
p’ =0} + Rip

—> p’=0"+ R%' + R,p
-0 []]
—p P =0 +Rip +Sw)R

= P’ =0+ Rip +wi xr]

< which is the known form of the velocity composition rule.
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3.1.2 LINK VELOCITIES

0 Using Denavit—Hartenberg convention:
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3.1.2 LINK VELOCITIES

4 P,_; and P;: Position vectors of the origins of Frames i—7 and i

B i
P, =pPi1 +tRiar;_q;

. . - i—1 i—1
wp P, =P; 1+ R’i—lri—l,i T Wwi—1 X Ri—l'ri—l.i

=P;_1 TVi—14i TWi—1 XTi_1;

< The linear velocity of Link i as a function of the translational and rotational
velocities of Link i — 1
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3.1.2 LINK VELOCITIES

o Link angular velocity:
R,=R, R
w—p S(w;)R; =S(w;i—1)R; + R;_1S(w!"} )R
=P R,_1S(w )R '=R_1Sw _|,)R_ R R’
=P R 1S(w; )R =S(Ri1w; )R,
=P S(w;)R;=S(wi_1)R;+S(Ri_1w;_| ,)R;

&)
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3.1.2 LINK VELOCITIES
2 Prismatic joint
wi—1,; =0

Vi—1,:1 = dizi—l

]Wz' — Wi

P, 1 +dizi 1 +w; Xri_1;

S
|
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3.1.2 LINK VELOCITIES

o Revolute joint

Wi—1,4i = Vizi_1

Chapter 3 - Differential Kinematics and Statics

Vi1, =Wi—1,i XTi—1

oF)

-— .
p;
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3.1.3 JACOBIAN COMPUTATION

o 1t is convenient to proceed separately for linear velocity and angular velocity.
< The linear velocity

pe — larpﬁ ZJPIQL

v A prismatic joint

G = d; wp  Gidp; =diZi—1 w—p Jp; = Zi-1

v~ Arrevolute joint

&)
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3.1.3 JACOBIAN COMPUTATION

2 Velocity contribution of a revolute joint to the end-effector linear velocity

&)

= Ad ply Sy (0 — S0 (cwiigo 0aSTils @




Chapter 3 - Differential Kinematics and Statics

3.1.2 LINK VELOCITIES

< The angular velocity

v A prismatic joint

3iJoi = 0  wip Joi =0

v" Arevolute joint

4iJo; = ViZi—1 = Joi = #i—1
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3.1.2 LINK VELOCITIES

o The Jacobian

Jp1 IPn |
J =
| Jo1 Jon |
Zi[;l] for a prismatic joint
Jpi| _ -
. LZ] ) [zio x (P, — P 1) o
/ h e t—1 for a revolute joint.
i—1

&)
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3.1.2 LINK VELOCITIES

2 The vectors Z;_,;, P, and P,_; are all functions of the joint variables:

—p zio1=R(q1)... R _7(qi-1)z0
z{]=[0 0 I]T

-~ 0 n—1 ~
> pﬁ_Al(ql)"*An (qn)pﬂ f}[}:[{} 0 0 1]T

~ . [R* O
= Pi—lefl}('?l)*-J _[O R“]J

< Jacobian in a different Frame u:
pe]_[R* O][p.]_[R" O],
w70 R'||w]| |O R“|”9

@ — J 0 RH_J
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3.2 JACOBIAN OF TYPICAL MANIPULATOR STRUCTURES

0 3.2.1 Three-link Planar Arm

— J(q) =
Po =
P2 =

P3 =

@ S U

4.:5_?.4:‘.3..’ k&nsl.?_) Q}v_,b — t_i»:.;l&o U.w.A.L.QS.o L] K
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zo X (p3 — Do)
20 Z1
[0 aicy
0 P = | a1s1

0 0

a1cy) + az2c12
181 + a2812

0

ai1¢c1 + az2¢12 + a3ci23
@181 + a2812 + A35123

0
0

1

z1 X (p3 — py)

z9 X (p3 — Po)
)
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3.2 JACOBIAN OF TYPICAL MANIPULATOR STRUCTURES

0 3.2.1 Three-link Planar Arm

[ —a181 — agS812 — 35123
aicy + azC12 + azci123
wlp J = 0
0
0
L 1
# JF _ —151 — 95192 — 35123
| ai1c1 + a2012 +asci123
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3.2 JACOBIAN OF TYPICAL MANIPULATOR STRUCTURES

0 3.2.2 Anthropomorphic Arm

—p J— |20%X(P3=Py) z1x(P3—P1) 22%(p3—P)

Z0 Z1 Z9
0 a2C1C2
po=p1= |0 P2 = | az281C2

0 1259

cq(ageq + agesa3)
ps; = | s1(ascs + azcas)
282 + (3523

0 51
zZn = 0 21 = Z9= | —4

@ 1 K
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3.2 JACOBIAN OF TYPICAL MANIPULATOR STRUCTURES

0 3.2.2 Anthropomorphic Arm

&)

dfféwb

" —s1(a2ce + azeaz)  —ci(azse + azsez) —azc1s23 7
c1(azca + aszeas) —Sl(ﬂzsz + as ‘:2‘1) —a381523
0 a2C9 + (3093 (1397
0 81
0 -
L 1 0
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3.2 JACOBIAN OF TYPICAL MANIPULATOR STRUCTURES

0 3.2.2 Anthropomorphic Arm

—81(agco + ageag) —cylagss + agsey) —agcyssg
# JP = {Jl(ﬂgﬂg — {lgﬂgg) —8 ({LQSQ -+ {13523) —(351 8923
! 0 azcz + azca3 ascas

&)
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3.2 JACOBIAN OF TYPICAL MANIPULATOR STRUCTURES
o 3.2.3 Stanford Manipulator

] — |20 % (Pe —Po) z1x(Pg—p1) =22
Z0 z1 0

z3 X (pg — P3) 24 X (Pg —Ps) 25 % (Pg — 5)]
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3.2 JACOBIAN OF TYPICAL MANIPULATOR STRUCTURES

o 3.2.3 Stanford Manipulator

Po=p,=|0

] Sgd;:_-, — 5 dg

pg = p,i = pn = Hngdg -+ Cq dg
cods

-fjlﬁgdg — Sldg -+ ([’:1 ({,'2[1155 -+ 52-{’:5) — 51 S,iqfiﬁ)dﬁ
Ps = | 51 Sgdg + dg e (Sl(ﬂ'g CqS5 + 1‘52{,'5) + 5,155)(35

cod3 + (—S9¢485 + Coc5)dg
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3.2 JACOBIAN OF TYPICAL MANIPULATOR STRUCTURES

o 3.2.3 Stanford Manipulator

0 —8
zog= 1|0 z1=|
1 0
C159
Z9 = Zg = | 5189
Co

—C1C254 — 51C4
Z4 = | —81C2584 + C1C4
5284

c1(cacass + s205) — $184S5
s1(ca2cass + s2¢5) + 15455
—59C4 85 + CoCn

z5

&)
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3.3 KINEMATIC SINGULARITIES

The Jacobian in the differential kinematics equation of a manipulator defines
a linear mapping: _ T
# Ut’i — J(Q)q Ul’.’. — [p{f L"JT]T

=

Kinematic Singularities: Configurations that J is rank-deficient
Singularities represent configurations at which mobility of the structure is reduced,

I.e., It IS not possible to impose an arbitrary motion to the end-effector.

When the structure is at a singularity, infinite solutions to the inverse kinematics

problem may exist.

In the neighborhood of a singularity, small velocities in the operational space may

cause large velocities in the joint space.

&)
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3.3 KINEMATIC SINGULARITIES

Boundary singularities:
Occur when the manipulator is either outstretched or retracted.

Do not represent a true drawback, since they can be avoided on condition that the
manipulator is not driven to the boundaries of its reachable workspace.

Internal singularities:

Occur inside the reachable workspace and are generally caused by the alignment of
two or more axes of motion, or else by the attainment of particular end-effector
configurations.

Constitute a serious problem, as they can be encountered anywhere in the reachable
workspace for a planned path in the operational space.
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3.3 KINEMATIC SINGULARITIES

0 Example 3.2 A
< Atwo-link planar arm %
J — —a1581 —aa2512 —az512
aic1 + az2012 az2c12

wep det(J) = ar1asss
# 192 —_ (] ’.'_?:g — T

< When the arm tip is located either on the outer ($2 = 0) or on the inner (32 = =)
boundary of the reachable workspace.

< Two column vectors of the Jacobian become parallel, and thus the Jacobian rank
becomes one.

&)

= A gy Sl (30 — S0 (cwigen 0uSTiG1S @




Chapter 3 - Differential Kinematics and Statics

3.3.1 SINGULARITY DECOUPLING

Computation of internal singularities via the Jacobian determinant may be
tedious and of no easy solution for complex structures.

For manipulators having a spherical wrist, by analogy with what has already
been seen for inverse kinematics, it is possible to split the problem of
singularity computation into two separate problems:

Computation of arm singularities resulting from the motion of first 3 or more links

Computation of wrist singularities resulting from the motion of the wrist joints.

Jin Ji2
J =
lJﬂ Jzz]

&)
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3.3.2 WRIST SINGULARITIES

2 On the basis of singularity decoupling

> vy =0 v =

&)
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3.3.3 ARM SINGULARITIES

2 On the basis of singularity decoupling

det(J p) = —aqazss(asce + azcaz) ==p U3 =0 Ua =

= A8yl STl (w0 — Sl cwdigo susTilS e
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3.3.3 ARM SINGULARITIES

2 On the basis of singularity decoupling

det(J p) = —asasss(ascy + ascas) ==p  Pyp =Py = 0

L= A oy Sy (30 — S0 cwitigen 045l
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3.4 ANALYSIS OF REDUNDANCY

o Redundancy is related to:
< The number n of DOFs of the structure
< The number m of operational space variables
< The number r of operational space variables necessary to specify a given task

v,eR"
T

g€R
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3.5 INVERSE DIFFERENTIAL KINEMATICS

The inverse kinematics problem admits closed form solutions only for
manipulators having a simple kinematic structure.

Problems arise whenever the end-effector attains a particular position and/or
orientation in the operational space, or the structure is complex and it is not
possible to relate the end-effector pose to different sets of joint variables, or
else the manipulator is redundant.

These limitations are caused by the highly nonlinear relationship between
joint space variables and operational space variables.

On the other hand, the differential kinematics equation represents a linear
mapping between the joint velocity space and the operational velocity space,
although it varies with the current configuration.

This fact suggests the possibility to utilize the differential kinematics
equation to tackle the inverse kinematics problem.

&)
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3.6 ANALYTICAL JACOBIAN

o If the end-effector pose is specified in terms of a minimal number of
parameters, it is possible to compute the Jacobian via differentiation of the

direct kinematics function with respect to the joint variables.

0 The Analytical Technique: p. = '?;';F qg=Jpr(q)q
oo, .
# {?—I)L dq
| D, Jp(q) ] ok(a)
T-= |- | = J -»>  J. -
[(bﬂ] [J.[I;";.(Q) q=4Jalq)q 1(q) dq
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3.6 ANALYTICAL JACOBIAN

0 The Analytical Jacobian J, is different from the Geometric Jacobian J, since
the end-effector angular velocity . with respect to the base frame is not

givenby ¢

0 Using ZYZ Euler angles:

B
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3.6 ANALYTICAL JACOBIAN

0 Using ZYZ Euler angles:

¢ |wy wy w )T =¢[0 0
[ y ’ 1T — "

1? (W, wy, w,] —19[ S
o | i

P Wy wy W]t =Y [c,sy

# We = T(¢c)¢c

0 —s, cy89

wp T =0 c, 5,89
1 0 cy

!

dffiw}) &_ﬁ:‘ﬁ,‘&sb)w}a—&ﬁsl&w’*e o,s:.o|.>
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3.6 ANALYTICAL JACOBIAN

The three components of @, represent the components of angular velocity

with respect to the base frame. Instead, the three elements of ¢ ', represent
nonorthogonal components of angular velocity defined with respect to the
axes of a frame that varies as the end-effector orientation varies.

det(T )= —s3 == the relationship cannot be inverted for 3 = 0, 7.

This means that, even though all rotational velocities of the end-effector
frame can be expressed by means of a suitable angular velocity vector .,
there exist angular velocities which cannot be expressed by means of ¢
when the orientation of the end-effector frame causes 3 = 0.

&)
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3.6 ANALYTICAL JACOBIAN

o Example 3.3

e w=|[w/2 0 0]F 0<t<1 Yy t=0 Yy
2 —
w=[0 w/2 0]" 1<t<2, x z
ZA =
e w=I[0 w/2 0]" 0<t<1
w=[m/2 0 0]" 1<t<2 v y
* £
5 A
T : ¢
—}[ wdt =[w/2 =/2 0] ‘s
Jo Y Yy
¥ :

&)
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3.6 ANALYTICAL JACOBIAN

2 The Analytical Jacobian and Geometric Jacobian relation:

0 58, C,;i_.;..‘:iﬂ-
T=10 cp, 5,8
1 0 Cy
I 9,
# Ve = ;EF =T e :i:!”

—p ] = TA{Q’)}JA

&)
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3.7 INVERSE KINEMATICS ALGORITHMS

2 Numerical implementation:

< Forn =1r case . _
- q=J '(q)v.

q(tes1) = q(te) + q(tr) At
w—p q(tee1) = q(ty) + T (q(te))ve(ty) At

< The computed joint velocities do not coincide with these in the continuous time.
Therefore, reconstruction of joint variables is entrusted to a numerical integration
which involves drift phenomena of the solution.

< This inconvenience can be overcome by resorting to a solution scheme that
accounts for the operational space error:

—p e =T — T,
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3.7 INVERSE KINEMATICS ALGORITHMS

0 Inverse kinematics algorithm with Jacobian inverse

Tq
Jooe
—@—'Id R K s > J, ' (q) S S LEN

k(-) |a

&)
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3.7 INVERSE KINEMATICS ALGORITHMS

2 Inverse kinematics algorithm with Jacobian transpose

ot S x e
z,
k() |

&)

dw‘o(ﬁ/'b A8 iy Sl (w90 — Sllo  cwiigs 0uSIIS
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3.7 INVERSE KINEMATICS ALGORITHMS

o Second-order inverse kinematics algorithm with Jacobian inverse

- : 5a) i._ f q | J(‘ g,

J(g.9) 4——

Ji(g) |e

k() |=

dw‘o(ﬁ/'b A8 iy Sl (w90 — Sllo  cwiigs 0uSIIS
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3.7 INVERSE KINEMATICS ALGORITHMS

o Comparison Among Inverse Kinematics Algorithms
< 3-link planar arm

‘1*8.1232:8.3:0.5m
< Initial posture:
q=|7 -—m/2 —7 /2] rad

p

|
| |
=
=
L]
o
| S
=~
o
=

&)

dw‘o(ﬁ/'b A8 iy Sl (w90 — Sllo  cwiigs 0uSIIS
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3.7 INVERSE KINEMATICS ALGORITHMS

o Comparison Among Inverse Kinematics Algorithms
< Motion trajectory:

p.(t) = [ﬂ.25(1 — ccrs*rrt)] 07t
4 0.25(2 + sin 7t) 06

05 1

0<t<4 a4l

.om 03}

¢4(t) = sin ﬂt 0<t<4; |

017

ol

017F

027

03r

0.6 06

&)

du‘,’wb a8yl Sl (o — SLilKo  cwdigo 0uSCiS1S @
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3.7 INVERSE KINEMATICS ALGORITHMS

2 Open-loop inverse Jacobian algorithm

x 107 pOs error norm x 107 Oren rror

—-0.2
——0.4
E
T -6

—0.8

-1 .
0 I 2 3 4 5
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3.7 INVERSE KINEMATICS ALGORITHMS

2 Closed-loop inverse Jacobian algorithm

joint pos joint vel
5 : : : 10
M
5 |
. 2
=) %
g 0 3 E 0
_5 3
2
-5 —-10 .
0 1 2 3 4 5 0 1 2 3 4 5
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3.7 INVERSE KINEMATICS ALGORITHMS

2 Closed-loop inverse Jacobian algorithm

x 10°  POSerror norm < 107 orien error
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Chapter 3 - Differential Kinematics and Statics

3.7 INVERSE KINEMATICS ALGORITHMS

o Jacobian pseudo-inverse algorithm
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Chapter 3 - Differential Kinematics and Statics

3.7 INVERSE KINEMATICS ALGORITHMS

0 Jacobian transpose algorithm
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Chapter 3 - Differential Kinematics and Statics

3.8 STATICS

The goal of statics is to determine the relationship between the generalized
forces applied to the end-effector and the generalized forces applied to the
joints (forces for prismatic joints, torques for revolute joints) with the
manipulator at an equilibrium configuration.

The application of the principle of virtual work:
Joint Torques

- dWV. =711dgq

End-effector forces

&)

= byl Sl (o — SUo (wadpo 0asCidls

- AW, = fldp + plw.dt



Chapter 3 - Differential Kinematics and Statics

3.8 STATICS
o By accounting for the differential kinematics relationship:
AW, = fldp, + plw.dt

Ve =1L pIT e AW, = L Ip(q)dg + pF Jo(q)dg

= . J(q)dq
SW, =118q

= .
OW, =~.J(q)dq

< The manipulator is at static equilibrium if and only if:

SW, =8W, Yoq wp T=JI"(q).

-zt o £ o e it o




Chapter 3 - Differential Kinematics and Statics

3.9 MANIPULABILITY ELLIPSOIDS

o Definition of indices for the evaluation of manipulator performance:
< The velocity manipulability ellipsoid
v Set of joint velocities of constant (unit) norm qTq =1
v" Capability of manipulator to change end-effector position and orientation

velocity
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