

دانشکده مهندسی مکانیک تمرین درس مبانی برق ۱

نام و شماره دانشجویی:

Chapter 3 – Inductance and Capacitance

*P3.5. A 2000- μ F capacitor, initially charged to 100 V, is discharged by a steady current of 100 μ A. How long does it take to discharge the capacitor to 0 V?

P3.16. The current through a 5- μ F capacitor is shown in Figure P3.16. At t = 0, the voltage is $v_C(0) = 0$ V. Sketch the voltage, power, and stored energy to scale versus time.

*P3.24. Find the equivalent capacitance for each of the circuits shown in Figure P3.24.

*P3.32. Suppose that we have a 1000-pF parallel-plate capacitor with air dielectric charged to 1000 V. The capacitor terminals are open circuited. Find the stored energy. If the plates are moved farther apart so that d is doubled, determine the new voltage on the capacitor and the new stored energy. Where did the extra energy come from?

***P3.43.** The current flowing through a 2-H inductance is shown in Figure P3.43. Sketch the voltage, power, and stored energy versus time.

*P3.44. A constant voltage of 10 V is applied to a 50- μ H inductance, as shown in Figure P3.44. The current in the inductance at t = 0 is -100 mA. At what time t_x does the current reach +100 mA?

***P3.45.** At t = 0, the current flowing in a 0.5-H inductance is 4 A. What constant voltage must be applied to reduce the current to 0 at t = 0.2 s?

*P3.60. Determine the equivalent inductance for each of the series and parallel combinations shown in Figure P3.60.

*P3.61. Two inductances $L_1 = 1$ H and $L_2 = 2$ H are connected in parallel as shown in Figure P3.61. The initial currents are $i_1(0) = 0$ and $i_2(0) = 0$. Find an expression for $i_1(t)$ in terms of i(t), L_1 , and L_2 . Repeat for $i_2(t)$. Comment.

*P3.72. a. Derive an expression for the equivalent inductance for the circuit shown in Figure P3.72. b. Repeat if the dot for L_2 is moved to the bottom end.

T3.1. The current flowing through a $10-\mu F$ capacitor having terminals labeled a and b is $i_{ab} = 0.3 \exp(-2000t)$ A for $t \ge 0$. Given that $v_{ab}(0) = 0$, find an expression for $v_{ab}(t)$ for $t \ge 0$. Then, find the energy stored in the capacitor for $t = \infty$.

T3.2. Determine the equivalent capacitance $C_{\rm eq}$ for Figure T3.2.

T3.3. A certain parallel-plate capacitor has plate length of 2 cm and width of 3 cm. The dielectric has a thickness of 0.1 mm and a relative dielectric constant of 80. Determine the capacitance.

T3.4. A 2-mH inductance has $i_{ab} = 0.3 \sin(2000t)$ A. Find an expression for $v_{ab}(t)$. Then, find the peak energy stored in the inductance.

T3.5. Determine the equivalent inductance L_{eq} between terminals a and b in Figure T3.5.

T3.6. Figure T3.6 has $L_1 = 40 \,\text{mH}$, $M = 20 \,\text{mH}$, and $L_2 = 30 \,\text{mH}$. Find expressions for $v_1(t)$ and $v_2(t)$.

