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2. KINEMATICS

A manipulator:

Kinematic chain of rigid bodies (links) connected by means of revolute or
prismatic joints.

The derivation of the direct kinematics equation allows the end-effector
position and orientation (pose) to be expressed as a function of the joint
variables.

With reference to a minimal representation of orientation, the concept of
operational space is introduced and its relationship with the joint space is
established.
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Chapter 2 - Kinematics

2.1 POSE OF A RIGID BODY

o Arigid body iIs completely described in space by its position and orientation
(in brief pose) with respect to a reference frame.

A ! /
o =o0,z+o0,y+0,2,

o Components of the vector along the frame axes
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Chapter 2 - Kinematics

2.1 POSE OF A RIGID BoDY

0 O—xyz: Reference frame

0 O’—x’y’z’: Orthonormal frame attached to the body and express its unit
vectors with respect to the reference frame.

o / T
r =Ir,Tr+IrYy+T,z
f f f
Y =Y, TY,YTY,2
f f f
Z =Z2,+z2,Yyt+z,z

< The components of each unit vector are the direction cosines of the axes of frame
O’—x’y’z’ with respect to the reference frame O—xyz.
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Chapter 2 - Kinematics

2.2 ROTATION MATRIX

0 O—xyz and O’—x’y’z’ frames

A

<
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Chapter 2 - Kinematics

2.2 ROTATION MATRIX

2 Unit vectors describing body orientation with respect to reference frame

" i - el yTax 27ax
_ / ! ' ! / / _ T 1T T
R=|2' vy 2'|=|z, v, z,|=|°Yy Yy 'y 2"y
i i R V- Tz yTz 2Tz

o Column vectors of matrix R are mutually orthogonal since they represent the
unit vectors of an orthonormal frame

meyr

I
o
L~
N
I

2 Also, they have unit norm
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Chapter 2 - Kinematics

2.2 ROTATION MATRIX

- - - ! - - T T T,
r, Y, Z, r T Yy x z'xT
_ / ! / _ - / ' _ T T 1T
R=|a' ¢y 2'|=|z, vy, z,|=|2"y vy 2"y
i i Lz, oyl 2l 2Tz yTz 27Tz
2 As a consequence, R is an orthogonal matrix
RTR — Ig
# RT — R—l

< Right-handed frame: det(R) =1
< Left-handed frame: det(R) =1

&)
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Chapter 2 - Kinematics

2.2.1 ELEMENTARY ROTATIONS

o Elementary rotations of the reference frame about one of the coordinate axes
< Reference frame O—xyz is rotated by an angle o about axis z

A _ _
z |z COS
! .
T = | sl
0
yl [~ . _11 ) =
] A . S111 (¥
!
y' . y Yy = COS (¥
- >
x o Y i 0 _
! B D m
!
o A U
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Chapter 2 - Kinematics

2.2.1 ELEMENTARY ROTATIONS

o Rotation matrix of frame O—x’y’z’ with respect to frame O-xyz is

cosa —sina 0
R.(a) = | sina cosa 0
0 0 1
A
z | 2
y
2 ‘"‘ 2!
y" o y‘
x Jo v -

ny o
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Chapter 2 - Kinematics

2.2.1 ELEMENTARY ROTATIONS

0 Rotations by an angle § about axis y

cos@ 0 sinf]
R,(3) = 0 1 0
—sinf3 0 cosf3 |

0 Rotation by an angle y about axis x

1 0 0
R.(v)= 10 cosy —sinvy
0 siny cosvy |

o Also:

&)
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Chapter 2 - Kinematics

2.2.2 REPRESENTATION OF A VECTOR

2 With coincident origins

A P= | Py p' = P;;
2 o | | Pz | Pl
) P 5 p B ]
T p=p,x' +py +p.z'=|a' y 2 |p
: B’
0 * ,Ig’ y)— ] i
p .Ed!: __________ = ) P = Rpf

. -» p =R'p
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Chapter 2 - Kinematics

2.2.2 REPRESENTATION OF A VECTOR

0 Example 2.1

! ! .

Pz = Py COSQX — P, SN Y
! . )

Py = Pz S Q1 Py COS ¥

!
Pz = P:-
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Chapter 2 - Kinematics

2.2.3 ROTATION OF A VECTOR

o A rotation matrix can be also interpreted as the matrix operator allowing
rotation of a vector by a given angle about an arbitrary axis in space.

0 Example 2.2 y
Py = p; COS (v — -p; SITL (v
1) . !
Py = Pz Sl + P, COS ¥
!
Pz = P:-
—p p=R.(a)p

&)
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2.2.3 ROTATION OF A VECTOR

A rotation matrix attains three equivalent geometrical meanings:

Mutual orientation between two coordinate frames

(its column vectors are the direction cosines of the axes of the rotated frame
with respect to the original frame)

Coordinate transformation between the coordinates of a point expressed in two
different frames (with common origin)

An operator that allows the rotation of a vector in the same coordinate frame.

&)
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Chapter 2 - Kinematics

2.3 COMPOSITION OF ROTATION MATRICES

0 O—XyYoZg, O—X1Y,21, O—X5Y,Z, (three frames with common origin O)
o The vector p: position of a generic point in space
< pY, pl, p? : the expressions of p in the three frames.

p' = R,p°
p’ = R)p' - R;=R\R,
p’ = Ryp’

< The overall rotation can be expressed as a sequence of partial rotations

o Also:

&)
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2.3 COMPOSITION OF ROTATION MATRICES

The frame with respect to which the rotation occurs is termed current
frame.

Composition of successive rotations is then obtained by postmultiplication
of the rotation matrices following the given order of rotations

&)
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2.3 COMPOSITION OF ROTATION MATRICES

Successive rotations can be also specified by constantly referring them to the
Initial frame.

In this case, the rotations are made with respect to a fixed frame.
— ()

R, = RIR{R,R] =» R)—R'R

Hence, it can be stated that composition of successive rotations with respect
to a fixed frame is obtained by premultiplication of the single rotation
matrices in the order of the given sequence of rotations.

An important issue of composition of rotations is that the matrix product is not
commutative.

&)
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Chapter 2 - Kinematics

2.3 COMPOSITION OF ROTATION MATRICES

0 Example 2.3
< Successive rotations of an object about axes of current frame
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Chapter 2 - Kinematics

2.3 COMPOSITION OF ROTATION MATRICES

0 Example 2.3
< Successive rotations of an object about axes of fixed frame
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2.4 EULER ANGLES

Rotation matrices give a redundant description of frame orientation; in fact,
they are characterized by nine elements which are not independent but
related by six constraints due to the orthogonality conditions.

3 parameters are sufficient to describe orientation of a rigid body in space.
(minimal representation)

A minimal representation of orientation can be obtained by using a set of
threeangles[¢ 9 v ] 7.

12 distinct sets of angles are allowed out of all 27 possible combinations;
each set represents a triplet of Euler angles.

&)
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Chapter 2 - Kinematics

2.4 EULER ANGLES

0 2.4.1 ZYZ Angles
< Rotate the reference frame by the angle ¢ about axis z
< Rotate the current frame by the angle 9 about axis y
< Rotate the current frame by the angle y about axis z

A
,//J;} /3’
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Chapter 2 - Kinematics

2.4 EULER ANGLES

0 2.4.1 ZYZ Angles

< The resulting frame orientation is obtained by composition of rotations with respect
to current frames

R(¢) = R.(p)Ry (J)R.» (V)
CoCPCyy — S8y —CpCySy — 8,6y CpSy
= | 8,C9Cy + Cu8y  —SuCeSy + CuCy 8,59
| —SPCy) S84 Ca 1

&)

L= A oy Sy (30 — S0 cwitigen 045l




Chapter 2 - Kinematics

2.4 EULER ANGLES

0 2.4.1ZYZ Angles
< The inverse problem

"1 Ti12 T13
R = |'ro1 T2 Ta3

@ = Atan2(ra3,713)

¥ to (0, TT) — ¥ = Atan?( ?"%3 + r%g; T:‘}ﬁ)
Y = Atan2(rss, —731).

&)
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Chapter 2 - Kinematics

2.4 EULER ANGLES

0 2.4.1ZYZ Angles
< The inverse problem

"1 Ti12 T13
R = |'ro1 T2 Ta3

p = ﬁtﬂ]’l?(_rﬁﬁa _7'13)

¥ in the range (—m,0) oo—fp 9 = Atan? (— \/qu + T%ga 7'33)

&)
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2.4 EULER ANGLES

2.4.2 RPY Angles
Representation of orientation in the aeronautical field.

These are the ZY X angles, also called Roll-Pitch—Yaw angles, to denote the typical
changes of attitude of an aircraft.

The angles [ ¢ 3 w ] T represent rotations defined with respect to a fixed frame
attached to the center of mass of the aircraft.

1

oY :
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Chapter 2 - Kinematics

2.4 EULER ANGLES

0 2.4.2 RPY Angles
< Rotate the reference frame by the angle y about axis x (yaw)
< Rotate the reference frame by the angle 3 about axis y (pitch)
< Rotate the reference frame by the angle ¢ about axis z (roll)

R(¢) = Riz () Ry (V)R (1))

CpCy r:g,:, SPSyy — SpCyy  CpSyCy T+ S, Sy
= | S,Cy @S98y T Culyy  S,89Cy, — CpSy,
—8y CY Sy Ci Cyfy

&)
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Chapter 2 - Kinematics

2.4 EULER ANGLES

0 2.4.2 RPY Angles
< The inverse solution

i 712 713

¢ = Atan2(ro1,711)

¥ in the range (—7/2,7/2) we——fp 1) = Atan? (-’-‘“311 T%g + T%:?.)

&)
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Chapter 2 - Kinematics

2.4 EULER ANGLES

0 2.4.2 RPY Angles
< The inverse solution

i 712 713

@ = Atan2(—ra1, —711)

U in the range (7/2,37/2)  w—tp ) = Atan?2 (—Tﬁla _\/ng + T‘%‘?.)

&)

= A8yl STl (w0 — Sl cwdigo susTilS @

’E,L"J = Atﬂ]’lg(—i*‘::_-,g, —ng).




2.5 ANGLE AND AXIS

A nonminimal representation: rotation of a given angle about an axis in
space (with 4 parameters)

This can be advantageous in the problem of trajectory planning for a
manipulator’s end-effector orientation.

A

z
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Chapter 2 - Kinematics

2.5 ANGLE AND AXIS

o Letr=1[r,r,r,] 7 be the unit vector of a rotation axis with respect to the
reference frame O—xyz.

2 In order to derive the rotation matrix R(3, r) expressing the rotation of an

angle 3 about axis r
R(T?, T) — Rz(&)Ry (:ﬂRz (U)Ry(_:}?)Rz (_{l)

T'y {

— COS Q¥ = ———
[+2 1 52 [r2 4 22
s+ Uy rs + Ty

sinf3 = 4/r2+1r2 cos 3 =r,.

r2(1 —cy) + cy reTy(l—cy) —r.89 Tari(l—cy)+ T'yﬁﬁ-
e RV, r)=|r,r,(1 —cy) + 71,59 ’rg(l —cy) + ¢y ryT. (1 —cy) —1rySy

| rera (1 —cy) —Tysy Tyra(l —cy) + 1289 r2(1 —cp) + ¢y

= Ad ply Sy (0 — S0 (cwiigo 0aSTils @
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Chapter 2 - Kinematics

2.5 ANGLE AND AXIS

2 The inverse problem

™M1 T12 T13
R — raq Ta9 o9

rs1 T'39 33

* 1 (T11+rea+r3z—1
¥ = cos
2

# _ _
1 sz — Ta3
r=S——3|"3 T

2sin v/ ?
| T21 —T12

&)
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2.5 ANGLE AND AXIS

The three components of r are not independent but are constrained:

2, .2, 2
ry oy, T = 1

If sin § = 0, the expressions become meaningless. To solve the inverse
problem, it is necessary to directly refer to the particular expressions attained
by the rotation matrix R and find the solving formulae in the two cases 9 =0

and3=rm.

dﬁﬁwia



Chapter 2 - Kinematics

2.6 UNIT QUATERNION

o The drawbacks of the angle/axis representation can be overcome by a

different four-parameter representation; namely, the Unit Quaternion

Q = {n. €}
U

7] = COS —

€ =sn—17r
2

&)
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Chapter 2 - Kinematics

2.6 UNIT QUATERNION

0 # : the scalar part of the quaternion while

De=eey g ] - the vector part of the quaternion.
T;2+Ei+6§+fg =1

[ 2(n? + Eg) — 1  2(erey —mez)  2(exe. +ney)
w— R(1,€) = | 2(e,6, +1me.)  2(n% + Fﬁ) -1 2(e e, —ney)
Q(EIEE T Tffy} 2(EyEE =+ TJFE:E) 2(??2 + Eg) —1

&)

-zt o £ o e it o




Chapter 2 - Kinematics

2.6 UNIT QUATERNION

2 The inverse problem

™M1 Ti2 T3
R = a1 Taoa Tag
31 T3z T3z

1
Y| E\/’Fu + 192 + 133+ 1

— sgn (r3p —Te3)/r11 — T2 — 733+ 1]

1
5 | sen (r13 — 731)\V/T22 — 133 — 111 + 1

| sgn (r21 — r12)V/r3s — ri1 — rao + 1|

&)
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Chapter 2 - Kinematics

2.1 HOMOGENEOUS TRANSFORMATIONS

2 The position of a rigid body in space:
< Position of a point on the body with respect to a reference frame (translation)

< Components of the unit vectors (orientation) of a frame attached to the body with
respect to the same reference frame (rotation)
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Chapter 2 - Kinematics

2./ HOMOGENEOUS TRANSFORMATIONS

2 Coordinate transformation (translation + rotation) of a bound vector between
two frames:
v" Ryt : Rotation matrix of Frame 1 0 _ 0 0.1
° . p - IE‘.]_ + Rlp
with respect to Frame 0

2 The inverse transformation:

p' = R0l + R{"p’ ==b p'=_Rlo}+ Rip°

Oy Y
. @
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Chapter 2 - Kinematics

2./ HOMOGENEOUS TRANSFORMATIONS

o The Homogeneous Representation of a generic vectorp : (p~)

< In order to achieve a compact representation of the relationship between the
coordinates of the same point in two different frames

N i"r“ Alp'

Pl i
Alﬂvﬂ (Ail])—lf)ﬂ

=1
|

< Homogeneous Transformation Matrix ] T

&)
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Chapter 2 - Kinematics

2./ HOMOGENEOUS TRANSFORMATIONS

2 Homogeneous Transformation Matrix

A?z Ril] ﬂ?
of 1 ]
A _ | BT -RTet| | R
o 1 o7
< Notice that: _
otice tha A l#AT

p’=AVAL. . A 1p”

&)
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Chapter 2 - Kinematics

2.8 DIRECT KINEMATICS

o A manipulator:
< Series of rigid bodies (links) connected by means of kinematic pairs or joints

2 Joints:
< Revolute
< Prismatic
REVOLUTE PRISMATIC

&; [y — —

&)
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2.8 DIRECT KINEMATICS

The whole structure forms a Kinematic Chain.
v One end of the chain is constrained to a base.
v" The other end is an end-effector (gripper, tool)

Open kinematic chain (only one sequence of links connecting the two ends)
Closed kinematic chain (a sequence of links forms a loop)

Characterized by a number of degrees of freedom (DOFs)
v" Uniquely determine its posture.
v" Each DOF is typically associated with a joint articulation and constitutes a joint variable

Direct kinematics:
Compute the pose of the end-effector as a function of the joint variables

&)

= B piy Sl (0 — SHI0 (cwdign 0uSild



Chapter 2 - Kinematics

2.8 DIRECT KINEMATICS

o Direct kinematics function homogeneous transformation matrix

Tt (q) = | @ sc@) ala) peq)

L 0 0 0 1

“ Ny, Se, A, and P, are a function of g

&)
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2.8 DIRECT KINEMATICS

0 Example 2.4
< Two-link planar arm

L= A oy Sy (30 — S0 cwitigen 045l
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Chapter 2 - Kinematics

2.8 DIRECT KINEMATICS

0 2.8.1 Open Chain
< An open-chain manipulator constituted by n + 1 links connected by n joints
< Define a coordinate frame attached to each link, from Link O to Link n

< The coordinate transformation describing the position and orientation of Frame n
with respect to Frame O:

TE']:.{ ) = A[](ﬁ’l A (!?.3) A”_ (Gr,)  — TE(QJ :T{JT{](Q)TH

On :
yﬂ
z'ﬂ
r° (q)
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Chapter 2 - Kinematics

2.8 DIRECT KINEMATICS

0 2.8.2 Denavit—Hartenberg Convention

< A systematic, general method is to be derived to define the relative position and
orientation of two consecutive links

JOINT 1-1 JOINT 2 JOINT 1+1

&)
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2.8 DIRECT KINEMATICS

2.8.2 Denavit—Hartenberg Convention
Let Axis I denote the axis of the joint connecting Link i — 1 to Link i

The Denavit—Hartenberg convention (DH) is adopted to define link Frame i:

v" Choose axis zi along the axis of Joint i + 1

v Locate the origin O; and O;’

v" Choose axis x; along the common normal to axes z;_, and z; (from Joint i to Joint i + 1)
v" Choose axis y; so as to complete a right-handed frame.

JOINT 1-1 JOINT 1 JOINT 1+1

&)
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2.8 DIRECT KINEMATICS

2.8.2 Denavit—Hartenberg Convention

The Denavit—Hartenberg convention gives a nonunique definition of the link frame
in the following cases:

v" For Frame 0, only the direction of axis z, is specified; O, and x, can be arbitrarily chosen

v" For Frame n (no Joint n+1) z,, is not uniquely defined while x, has to be normal to axis z,_,
(Typically, Joint n is revolute, and thus z, is to be aligned with the direction of z,_,)

v When two consecutive axes are parallel, the common normal is not uniquely defined

v When two consecutive axes intersect, the direction of xi is arbitrary

v When Joint i is prismatic, the direction of z,_, is arbitrary

&)
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Chapter 2 - Kinematics

2.8 DIRECT KINEMATICS

0 2.8.2 Denavit—Hartenberg Convention
< Parameters:

v & . Distance between O; and O;’
v"d;: Coordinate of O; along z;_,
v" ai : Angle between axes z;_, and z; about axis Xi (positive: counter-clockwise)

v" 9i : Angle between axes X;_, and x; about axis z;_, (positive: counter-clockwise)

JOINT 1-1 JOINT 1 JOINT i+1

&)
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Chapter 2 - Kinematics

2.8 DIRECT KINEMATICS

0 2.8.2 Denavit—Hartenberg Convention

< Two of the four parameters (a; and o;) are always constant and depend only on the
geometry of connection between consecutive joints.

< If Joint i is revolute the variable is 9,

< If Joint i is prismatic the variable is d;

JOINT i-1 JOINT 1 JOINT 1+1

&)
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Chapter 2 - Kinematics

2.8 DIRECT KINEMATICS

0 2.8.2 Denavit—Hartenberg Convention
< Coordinate transformation between Frame i and Frame i — 1;

1. Choose a frame aligned with Frame i — 1

2. Translate the chosen frame by d; along axis z;_, and rotate it by ; about axis z;_,

[ Cy, —Sy, 0 07
i—1 S.!fji E.![Jﬁ 0 U
Ai! o 0 0 1 d;
L0 0 0 1.

&)
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Chapter 2 - Kinematics

2.8 DIRECT KINEMATICS

0 2.8.2 Denavit—Hartenberg Convention
< Coordinate transformation between Frame i and Frame i — 1;

3. Translate the frame aligned with Frame i’ by a; along x; and rotate it by o; about X;

"1 0 0 ;]
i’ 0 ca. —S8a, 0

A; 0 s4, cCa, 0

0 0 0 1]

4. Post-multiplicate the single transformations:

[ CY, —89,Ca; S9,5qa; @iCy,
ﬁ Al—l(q) _ A’l—lAt: _ S'ﬂi c'ﬂﬁcﬂf _C'ﬂﬁgﬂ:i a"i‘.S'ﬂi
5 T . F 1 T
' ! ! ! 0 Sov; Co, dt'

@ L0 0 0 1
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.1 Three-link Planar Arm

= A8yl STl (w0 — Sl cwdigo susTilS @




Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.1 Three-link Planar Arm
< DH Parameters

Link ; Y d; v
1 a1 0
2 (12 U
3 (i3 0
;o —S; 0 a;e;
- si ¢ 0 a;s; :
A’ 1 191_ — Si Ci 191 —1.9
1 ( ) 0 0 1 0 l ) 13
L0 0 0 1 .

dw‘o(ﬁ/'b A8 iy Sl (w90 — Sllo  cwiigs 0uSIIS




Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.1 Three-link Planar Arm
< All joints are revolute:

CC123  —S123 0 ajcp +asciz + ascies
Tp(q) — A4l A2 — S123 €123 0 a181 4+ azs12 + aszsios
3 1 2«3 0 U ]_ U
0 0 0 1 i

q — [”5’1 Vo 193]'1"

« End-effector frame: -0 0 1 0°
3 |0 1 0 0

Te=1_10 0 0

L0 0 0 1

& . @
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.2 Parallelogram Arm

Z,
N
Yo
OL ¥ .
Qg
Qg y Y o
o | My, N ‘ N
x,, “ 3
A
131
Uy .
7
s S

&)

dw‘o(ﬁ/'b A8 iy Sl (w90 — Sllo  cwiigs 0uSIIS
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.2 Parallelogram Arm
< DH Parameters

Link ai % d; i
]_! aq’ 0 0 ’.'_91f
2/ o/ 0 0 192’
3’ s 0 0 D
1" a» 0 0 V17
4 a4 0 0 0

&)
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.2 Parallelogram Arm
< The coordinate transformations for the two branches:

-{jlrzrﬂr —S]_rgrg: {_]' ﬂ.lr[’:lr + [,[.2![':1:2: + [']_,3: ['_:1:2;3: 7]
' 42 svry cvay 0 apsy +axsypy +aysyay
Aﬂ; ! ZA{],AI,AE, —
L 0 0 0 1 |
rF C ; T
q = [191# ’L)E-' 1?31 ]
-{'_:1” —Slu U {I,l.rr{'_:lu n
0 " - Slu {'_:]_u 0 ﬂlnt‘jlu " i
A i (q ) — [] U 1 U q — 1?1-"-"
L 0 0 0 1

&)

UMW’)

4.}:5)..2...4 L_ﬁ:.?l.?_) L}M_}& — t_ia.;l&o (54\.0..&;.%.0 L] K




Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.2 Parallelogram Arm

< The constant homogeneous transformation for the last link:

1
r 0
AP = |
‘ 0
0
< The position constraints:
dgr 1 — U

0 0 agq’

1 0 O
01 0
0 0 1.

R} (¢') (9% (d) — 1 (d")) =

&)

dw‘o(ﬁ/'b A8 iy Sl (w90 — Sllo  cwiigs 0uSIIS




Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.2 Parallelogram Arm

a1+ = a3zs and o =

.1}'1.

(11 (Elf -+ Elfgfgr) + aq (ﬂl-’gf — ﬂl”) — 0 xol

{11:(51; —|— Slrgf;:_r':) + 'ﬂ-l”(ﬁlfﬁf —_ 51”) o []

T?gf — 191” — 191-'

Uy =T — o =7 — Uy + Uy

#

&)
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.2 Parallelogram Arm
< The vector of joint variables:

] = ['ﬂlr lﬁl” ]T

< Direct Kinematic Function:

"—cyr sy 0 ayreyr —aqeyr T
0 . 0 3: L —Sl.r —['_:1: U' .[']_'.1:: Slu —_ [’!"’151’
L0 0 0 1 |

&)

-zt o £ o e it o




Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

o 2.9.3 Spherical Arm
<9 ‘

/“‘"‘*-ﬂ-..
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

o 2.9.3 Spherical Arm
< DH Parameters

Link a; ;g d; i
1 0 —1r /2 0 U1
2 0 /2 da Op!
3 0 0 ds 0

&)
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

o 2.9.3 Spherical Arm
< The homogeneous transformation matrices:

1 0 —s1 07 “co ()
f S 0 C 0 , 59 0
P R ] IR
L0 0 0 1] 0 0

1 0 0 07

o {01 0 0

A d) =10 0 1 a

0 0 0 1.

&)

L= A oy Sy (30 — S0 cwitigen 045l
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Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.3 Spherical Arm
< The direct kinematics function:

CC1Co  —81 €189 C18o0d3 — s1do ]
S1C2 €1 8182 8182d3 + c1ds
m—p T3(q) = AJAA; =
‘ : —89 0 Co cods
L0 0 0 1 |

q = [1)1 192 dg]T

&)
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.4 Anthropomorphic Arm
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.4 Anthropomorphic Arm
< DH Parameters:

Liﬂl{ [F ¥4 di '191'
1 0 /2 0 W
2 as 0 0 a2
3 s 0 0 U3
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.4 Anthropomorphic Arm

"er 0 sy 07
0 st 0 —e1 O
A =10% 1 o o
0 0 0 1.
;o —s; 0 a;c;
i1 si ¢ 0 ais;
ATW)=14 o 1 o
Lo 0 0 1 J
" C1Co3
51C23
q Tg(fj) = A?A%Az = S93
L 0
q=[v1 VY2 U3]'

4.:5_?.4:‘.3..’ k&nsl.?_) Q}v_,b — t_i»:.;l&o U.w.A.L.QS.o L] K

1=2,3
—c1823 s1 ci1(agca + ascas)”
—s1823 —c1 s1(azea + aseas)
C23 0 azs2 + azsa;3
0 0 1 |
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

o 2.9.5 Spherical Wrist
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.5 Spherical Wrist
< DH Parameters:

Link a; i d; OF
4 0 —7/2 0 Iy
5 0 /2 0 s
6 0 0 dg g
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L= A oy Sy (30 — S0 cwitigen 045l




Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.5 Spherical Wrist

"cqg 0 —sq4 07 e 0 s5 07
3,0+  |Sa 0 ca 0 1,9y _ |85 0 —e5 O
AiWd =109 1 o o AW =19 1 0 o
L0 0 0 1. L0 0 0 1]

cg —Sg 0 07

5 |ss ¢ 0 O

As(V6) = 0 0 1 dg

L 0O 0O 0 1.

L= A oy Sy (30 — S0 cwitigen 045l
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.5 Spherical Wrist

CC4C5CE — S48 —CyC586 — S4Cq €485 CuSsdg ]
3 . ASAJAE | 84C5Cg + C485 —S4C58 + C4Cg  S4S55 S,it’:'::jdﬁ

w—p Ti(q) = AJASAG =

- —55Cq 558 Cr, Cr, dﬁ,

i 0 0 0 1

L= A oy Sy (30 — S0 cwitigen 045l
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

o 2.9.6 Stanford Manipulator

TG =T5Tg =

dw‘o(ﬁ/'b A8 iy Sl (w90 — Sllo  cwiigs 0uSIIS
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

o 2.9.6 Stanford Manipulator

-Clsgdg — Sldg - (f:l(CQ(J,iéia -+ 5265) — 315455)0}5
Ps — 8182023 + Cldg -+ (81((12{:455 + SQC::,) + (’Jlt‘:',j.‘:ig:,)dﬂ
cads + (—s2ca85 + cac5)ds

K ((52((,'465(:5 — $48g) — 52551'3,.3) — s1(sqc506 + €456)

ng = | 8 (f:g(f:4f:5(:5 — $456) — 3255(15) + ¢1(84¢5¢6 + €456)
i —so(cacsc6 — S456) — C285Cq

K3 (—r:g(c,lc;,sﬁ + s4¢6) + 525535) — 81(—84¢556 + €4C6)

S = | 81 (—{:2({34{:556 + s4c6) + 525555) + ¢1(—s4¢556 + €4C6)

so(cqc586 + S4c6) + C25586

c1(ca€y85 + Soc5) — 515455
0
ag; = | S1(cacass + sacs5) + c15485
— 8920485 + CocCh

L= A oy Sy (30 — S0 cwitigen 045l




Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.7 Anthropomorphic Arm with Spherical Wrist
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.7 Anthropomorphic Arm with Spherical Wrist
< DH Parameters

Liﬂl{ [ k4 d»,, '191'
1 0 T /2 0 W
2 as 0 0 o
3 0 /2 0 4
4 0 —m/2 d4 V4
53 0 w/2 0 s
6 0 0 dg e

db"éf'/- /) ‘\'*5)"“"‘" oLy un_,a—&ul&o (W0 PYEL W] K




Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.7 Anthropomorphic Arm with Spherical Wrist

"ca 0 s3 07
9 |83 0 —e3 O
AW)=10 1 0 o
L0 0 0 1.

A:i (19,1) —

&)

L= A oy Sy (30 — S0 cwitigen 045l




Chapter 2 - Kinematics

2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

0 2.9.7 Anthropomorphic Arm with Spherical Wrist

aoC1Co + d;jﬂl S93 + d{-} (Cl ({Jggfi455 + 32365) + 815,155)

Pg = | assica + dysis23 + de(s1(cascass + sa3cs) — c15485)
(lg 89 — d,iﬂgg - dﬁ(Sggﬂ,iS::, — (123(55)

K3 (f:g3(c,1f:5fzﬁ — 848¢) — 5235566) + s1(84¢5¢6 + €456)
ng = | $1 (1’323({1465{15 — $486) — 52355{,'5) — c1(s4c506 + €456)
I S23(cacsCs — S456) + €2355Cq
-(31 (—ﬂgg(ﬂdﬂfsSﬁ -+ ‘:-16.5) -+ 3235585) + 51(—541'3555 + (5,1(,'6)
8¢ = | 81 (—r:gg(aicg,sﬁ + s4cq) + 3235555) — c1(—s4€556 + C4C6)
—823(C4C586 + 54C6) — C235556

] ((123(5455 + 52365) + 5184855
Sl(flggﬂd.‘if; + 523[’35) — 15455
§23C455 — €23C5

2
=3
|
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

20 2.9.8 DLR Manipulator

g %8 ‘
Q<=
ds ’ "' ’
zo ! &, ds 4 z'r ' 3 T5\zg
. & g
R -‘ 9 T \dr
7 = B, " 73
& z, =
R B 134 z, '
Y, 2y
By

o o

L= A oy Sy (30 — S0 cwitigen 045l
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

20 2.9.8 DLR Manipulator
< DH Parameters

Link a; Q; d; Vi
1 0 /2 0 )y
2 0 /2 0 V2
3 0 /2 ds 4
4 0 /2 0 U4
5 0 /2 ds Js
6 0 /2 0 g
T 0 0 d7 ty
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

20 2.9.8 DLR Manipulator

“e; 00 s; 0 07
- s, 0 —c 0
AL |77 : —1.....
! 0 1 0 d; ‘ ' 0
0 0 0 1
“cr —s7 0 07
s » 0 0
AB= ST C7
’ 0 0 1 d;
L0 0 0 1.

&)

L= A oy Sy (30 — S0 cwitigen 045l
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

20 2.9.8 DLR Manipulator

-dgﬂidﬂ + dﬁiﬂdﬁ + d?iﬂd? ]
d3Yyd, + dsyas + d7yd,
| d3zd, + ds5zdag + d7zd,

=1

Td, = €152

Td, = c1(cac3sq — S2¢4) + S15384
Td, = c1(cakr + s2ka) + s1k3

Yds — 5152

Yd. = S1(C2C384 — S2€4) — €15354 ks

= c3(cqC586 — S4Cg) + S355S6
Ya. = 51 (Cgkl + Sgkg) — Clkg

ko = 840586 + C4Cq
Z4. = —C

ds 2 ks = s3(cacss6 — s4C6) — €355S6
Zd, = C2C4 + S2C384

zd. = S2(c3(cacsse — Sace) + $38586) — caka

= A8yl STl (w0 — Sl cwdigo susTilS @
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2.9 KINEMATICS OF TYPICAL MANIPULATOR STRUCTURES

20 2.9.8 DLR Manipulator

i ((zacs + xes5)ce + Tpse)cr + (TaSs — TeC5)S7
n? = | ((yaCs + yes5)ce + ybse)cr + (YaSs — YeCs)s7
(zaCe + 2zcS6)C7 + 28T
) [ —((wacs + Tc85)c6 + T56) 87 + (TaS5 — TeC5)C7
87 = | —((yaCs + YecS5)c6 + YbS6)S7 + (YaS5 — YeCs)C7
! —(2zaC6 + 2c86)57 + 2pC7 T4 = (10965 + 5153)C1 + 15954
; (xaCs + Tc55)86 — Tpce Ty = (C102C3 + $183)84 — C182C4
a; = (yacﬁ + yCS5)Sﬁ — Yo | T. = €1C283 — S1C3
i ZaS6 — ZcC6 Yo = (810003 — €183)Cq + 515284

Yp = (S1C2¢3 — €183)84 — S152¢4
Yo — S51C283 + C1C3

Za = (S2c3C4 — €284)C5 + 28355
zp, = (s2c384 + Ccacy)S5 — S283C5

Zp = 890384 + Cacy.
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2.10 JOINT SPACE AND OPERATIONAL SPACE

20 2.9.9 Humanoid Manipulator

cog  So3 0 07
3 __ | —S23 Ca3 0 0
TV = 0 0O 1 0
L 0 0 0 1.

= A8yl STl (w0 — Sl cwdigo susTilS @




2.10 JOINT SPACE AND OPERATIONAL SPACE

Direct Kinematics:
Position and orientation of the end-effector frame to be expressed as a function of
the joint variables with respect to the base frame.

This is quite easy for the position, but quite difficult for orientation
(9 components must be guaranteed to satisfy the orthonormality constraints)

The end-effector pose can be given by a minimal number of coordinates and
minimal representation (Euler angles) describing the rotation

o= | 7|

P, : End-effector position
¢, : End-effector orientation

dﬁﬁwia



2.10 JOINT SPACE AND OPERATIONAL SPACE

The vector X, is defined in the space in which the manipulator task is
specified; hence, this space is typically called operational space.

o= | P

On the other hand, the joint space (configuration space) denotes the space in
which the (nx1) vector of joint variables P

q1
. q=| -
For a revolute joint: g = U; ‘
For a prismatic joint: ¢ = d; - T
Direct Kinematics Equation: r, = k:liq“}

&)
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2.10 JOINT SPACE AND OPERATIONAL SPACE

0 Example 2.5

P 11C1 + d2C12 + A3C123
xe = | py | = k(q) = | a151 + azs12 + azsizs
Q@  + P + U3

< 3 joint space variables allow specification of at
most 3 independent operational space variables.

< |f orientation is of no concern, there is kinematic
redundancy.
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2.10 JOINT SPACE AND OPERATIONAL SPACE

o 2.10.1 Workspace

o Workspace:

The region described by the origin of the end-effector frame when all the
manipulator joints execute all possible motions

< Reachable workspace
< Dexterous workspace

p. = p.(q) Gim < ¢ <qgnm t=1,...,n

< This volume is finite, closed, connected and is defined by its bordering surface.

&)

. . . 88
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2.10 JOINT SPACE AND OPERATIONAL SPACE

0 Example 2.6
< The simple two-link planar arm

A
9
b qzy c ;
4
)
9 q q X
1 1M 1 > *"“i
a 9,=0 d l,'.,ﬁ
)
t‘t
J
]
€ qam f

L= A oy Sy (30 — S0 cwitigen 045l




2.10 JOINT SPACE AND OPERATIONAL SPACE

2.10.2 Kinematic Redundancy

Kinematically Redundant:

When number of DOFs is greater than the number of variables that are necessary
to describe a given task

A manipulator is intrinsically redundant when the dimension of the
operational space is smaller than the dimension of the joint space (m <n)

Redundancy is a concept relative to the task assigned to the manipulator.

&)
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2.11 KINEMATIC CALIBRATION

The Denavit — Hartenberg parameters for direct kinematics need to be
computed as precisely as possible in order to improve manipulator accuracy.

Kinematic calibration techniques are devoted to finding accurate estimates
of DH parameters from a series of measurements on the manipulator’s end-
effector pose.

As a result of the kinematic calibration procedure, more accurate estimates
of the real manipulator geometric parameters as well as possible corrections
to make on the joint transducers measurements are obtained.

&)
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2.12 INVERSE KINEMATICS PROBLEM

The inverse kinematics problem consists of the determination of the joint
variables corresponding to a given end-effector position and orientation.

It transforms the motion specifications, assigned to the end-effector in the

operational space, into the corresponding joint space motions that allow
execution of the desired motion.

The inverse kinematics problem is much more complex:
The equations to solve are in general nonlinear
Multiple solutions may exist
Infinite solutions may exist
There might be no admissible solutions

&)
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2.12 INVERSE KINEMATICS PROBLEM

0 2.12.1 Solution of Three-link Planar Arm

< The end-effector position and orientation in terms of a minimal number of
parameters:

v The two coordinates p,, p,
v" The angle ¢ with axis X

&)
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2.12 INVERSE KINEMATICS PROBLEM

0 2.12.1 Solution of Three-link Planar Arm
< Algebraic solution technique

¢ =1 + U2+ Vs

Pwx = Pz — A3Cy = A1C1 + A2C19

= _

Pwy = Py — @3Sy = @181 + Q2812

2 2 2 2
w— Do+ Py = al + a5 + 2a1a2c2

&)

L= A oy Sy (30 — S0 cwitigen 045l

9 2 2 9
_ Pwaz T Pwy — a1 — Q3

q Co =

Qﬂlﬂg




2.12 INVERSE KINEMATICS PROBLEM

0 2.12.1 Solution of Three-link Planar Arm
< Algebraic solution technique

q ﬂg — Atan?(fﬂﬁﬂ?)

&)

L= A oy Sy (30 — S0 cwitigen 045l
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2.12 INVERSE KINEMATICS PROBLEM

0 2.12.1 Solution of Three-link Planar Arm
< Algebraic solution technique

(a1 + asc2)pwy — a252PW s

Pwz T Pw
y
#
. (a1 + asca)pw ., + azsapwy,
=

2 2
Pwaz T Py

w1, = Atan2(s,,cq)

&)

L= A oy Sy (30 — S0 cwitigen 045l
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2.12 INVERSE KINEMATICS PROBLEM

0 2.12.1 Solution of Three-link Planar Arm
< Geometric solution technique
v" The application of the cosine theorem to the triangle formed by links a;, a, and

the segment connecting points W and O
2 2 2 2 | {
Pw z + p‘H:’y — aq + oy — 2&1{12 COS (ﬂ' — }_}2)
2 2 2 2
Pw + pﬁ*’y — aq — g Y,

2011 a9

ﬁ Co =

w— 1o = 4cos _l(r:g)

v" The elbow-up and elbow-down posture

@
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2.12 INVERSE KINEMATICS PROBLEM

0 2.12.1 Solution of Three-link Planar Arm
< Geometric solution technique

2 2 2 2
Py, + Pwy T 01 — a3

. .. 2 — . . —1
Cg \/pnrrl_ + pwry = a1 + A9Cy # .‘6 = COS

2'ﬁ*l \/p%‘ir’:r + p%{r”y

a = Atan2(pw,, pwa)

— ) = a3

@ 0

L= A oy Sy (30 — S0 cwitigen 045l




2.12 INVERSE KINEMATICS PROBLEM

2.12.2 Solution of Manipulators with Spherical Wrist

Most of the existing manipulators are kinematically simple, since they are typically
formed by an arm, of the kind presented above, and a spherical wrist.

A suitable point along the structure can be found whose position can be expressed
both as a function of the given end-effector position and orientation and as a
function of a reduced number of joint variables.

This is equivalent to articulating the inverse kinematics problem into two
subproblems, since the solution for the position is decoupled from that for the
orientation.

&)
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2.12 INVERSE KINEMATICS PROBLEM
0 2.12.2 Solution of Manipulators with Spherical Wrist
Rt’i — [nﬁ Se ﬂ'c]

pﬂf’ — pg _ dﬁﬂ'ﬁ Z4

dw‘o(ﬁ/'b A8 iy Sl (w90 — Sllo  cwiigs 0uSIIS




2.12 INVERSE KINEMATICS PROBLEM

2.12.2 Solution of Manipulators with Spherical Wrist
The inverse kinematics can be solved according to the following steps:

v Compute the wrist position p, (4;, s, ds)
v Solve inverse kinematics for (q,, ., 03)

v" Compute R%(q,, 0, 03)

v Compute R3,(9,, 95, $5) = R%TR

v Solve inverse kinematics for orientation (3,, -, %)

It is possible to solve the inverse kinematics for the arm separately from the inverse
kinematics for the spherical wrist.

&)
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2.12 INVERSE KINEMATICS PROBLEM

0 2.12.3 Solution of Spherical Arm

PWzC1 + Pwysi d3zs2
Pilﬂf = —PWz = | —d3eo
—PpwzS1 + PwyCl do
191
t = tan —
2
1 — ¢2 2t
ﬁ 1 = 5, =
R R
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2.12 INVERSE KINEMATICS PROBLEM

0 2.12.3 Solution of Spherical Arm

(da + pwy)t* + 2pwat + da — pwry =0

—Pwzx + \/p%IfI + p%‘if’y o d%

# —
dy + pwy

ﬁ T_{)]_ = QAtH.I].Q(_p]@’I + \/p%,vz -+ p%p’y - d% y dﬂ + pﬂr’y)

&)
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2.12 INVERSE KINEMATICS PROBLEM

0 2.12.3 Solution of Spherical Arm

d3 = \/ (pwee1 + pwysi)? + iy,

~ PwaC1 +pwySt  d3ss

—PW 2 —d3cs

) o = Atan2(pwc1 + pwySt, Pwz)

&)
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2.12 INVERSE KINEMATICS PROBLEM

0 2.12.4 Solution of Anthropomorphic Arm

pwaz = cil(azc2 + aszcas)

Pwy = s1(az2c2 + ascas)

Pwz = (282 + A3523.

> s+ By + B = 3+ 63+ 2mac

2 9 2 2 2
_ Pwe Py tPw. — a3 — a3

---'» Cg =

2&2&3

--’} §3 = =+ 1-—{%

L= A oy Sy (30 — S0 cwitigen 045l
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2.12 INVERSE KINEMATICS PROBLEM

0 2.12.4 Solution of Anthropomorphic Arm
Uy = AtanQ(s;;, 1'33)
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ﬁ

Uz = —Us 1.
2 2 2
Pwz + Pwy = (agce + azca3)
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£\ /Phyz + Pl (a2 + ascs) + pwzazss

Co
(I% + G% <+ 2&2&363
I . 2 2 .
pwz(az + ases) F /Py, + Piy,a383
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2.12 INVERSE KINEMATICS PROBLEM

0 2.12.4 Solution of Anthropomorphic Arm

_ At . + /[ 2 2
Vo1 = Atan2 ( (a2 + azc3)pw. — azsy \/Piy. + Py,

+ 2 . 2r 2 sTowr
Sq = 1 c3 ﬁ (az +a3(3)wpnz + Py, + 0383 Pw

S——

P11 = Atan2 ( (az + ascs3)pw . + azsy ph .+ p%vy:

—((12 + agc;:_,)\/p%;rrz + p%:,ry + CLSS;PW’Z)

V2,111 = Atan2 ((ﬂﬂ + azc3)pw. — azsy \/ P%VI + p%l,y,

S-; —+/1 — E% # (a2 + aaﬂa)wpﬂrr + p%‘iﬁy + GSSEPWz)

Vo 1v = Atan2 (('12 + ascs)pw + azs; \/p%vz + P%vya
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2.12 INVERSE KINEMATICS PROBLEM

0 2.12.4 Solution of Anthropomorphic Arm

Pwz = £€1 \/ Piyve + P%vy

PWwy = LS1 \/I"%VI + P%{ry

v 1= Ataﬂ?(pWya PW;-:)

']}11!]1 = AtaIlQK_pWyj _pl’:vl'}

Atan2(pw,, pwz) — Pwy = 0

# 1_91_.11 — {
Atan2 (pﬂr’y'spﬂf’r) +m Pwy <0
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Chapter 2 - Kinematics

2.12 INVERSE KINEMATICS PROBLEM

0 2.12.4 Solution of Anthropomorphic Arm
< There exist four solutions:

(D11,Y21,Y31) (V11,Y%201,Y311) (D1, Y211,931) (Y111, Y2.1v, U3.11)

UMWI, M‘M‘ @'L?—) L’*’_)o _ t&éls.o L;MJMPO o s & .‘o




2.12 INVERSE KINEMATICS PROBLEM

o 2.12.5 Solution of Spherical Wrist

Chapter 2 - Kinematics

n 3 7
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vy = AtanQ(ag, a,z,)

95 = Atan2(/(a3)2 + (a3)2,a?)
Jg = Atan2(s?, —n?)

Wy = Atalﬂ(—a;, —ai)
9s = Atm(_\/(ag)ﬂ + (a3)2, a?')

96 = Atan2(—s>,n?)
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